325 research outputs found

    Effects of Paper-Mill Sludge as a Mulch versus Topsoil Incorporation on Potassium Uptake and the Grain Yield of Rain-Fed Wheat in a High Specific Surface Loess Soil with Illite Dominance in Clay Fraction

    Get PDF
    A field experiment with rain-fed winter wheat investigated the nutritional aspects of paper-mill sludge as a mulch and incorporated into the topsoil. Treatments with chemical fertilizers were also used as controls. Paper-mill sludge used as mulch with high rate (100 MG ha−1) and also the combined N and K mineral fertilizer treatments increased yield when a low potassium otherwise caused potassium deficiency in wheat with high specific surface soil. High soil Ca : K molar ratio by incorporation lowered potassium uptake and yield, with visual symptoms of potassium deficiency. A very high Gapon selectivity coefficient (KG) for K exchange against Ca + Mg (16.58 (L/mole)0.5) produced a nonlinear normalized exchange isotherm in favor of potassium with these soils containing high illite. Ca and K which are released by sludge decomposition are diverged in soil when mobilized by rain infiltration, lowering Ca : K molar ratio. Low soil Ca : K molar ratio may be expected by surface sludge application relative to incorporation, due to greater rain infiltration through upper soil layers and their effluent pore volumes per unit depth. Ca from triple superphosphate by the P, N, and K mineral fertilizers combined also reduced potassium uptake and yield relative to N and K combined

    Control design for inhomogeneous broadening compensation in single-photon transducers

    Get PDF
    A transducer of single photons between microwave and optical frequencies can be used to realize quantum communication over optical fiber links between distant superconducting quantum computers. A promising scalable approach to constructing such a transducer is to use ensembles of quantum emitters interacting simultaneously with electromagnetic fields at optical and microwave frequencies. However, inhomogeneous broadening in the transition frequencies of the emitters can be detrimental to this collective action. In this article, we utilise a gradient-based optimization strategy to design the temporal shape of the laser field driving the transduction system to mitigate the effects of inhomogeneous broadening. We study the improvement of transduction efficiencies as a function of inhomogeneous broadening in different single-emitter cooperativity regimes and correlate it with a restoration of superradiance effects in the emitter ensembles. Furthermore, to assess the optimality of our pulse designs, we provide certifiable bounds on the design problem and compare them to the achieved performance

    Histomorphometric evaluation of tibial subchondral bone after moderate running in male and female Wistar rats

    Get PDF
    Background: Exercise has been shown to be beneficial to the skeleton, in both humans and animals. This study was done to test the sex-related difference in the risk of osteoarthritis (OA) of the knee joint and also on the subchondral bone after moderate running exercise. Materials and methods: Forty male and female Wistar rats were randomly assigned to four equal groups (2 male and 2 female groups) in the same condition. Ten animals of each sex were selected as control groups, while running exercises were performed in remaining 20 male and female rats, using a motor treadmill to motivate rats to run daily distances of 1 km at 5 days/week within 6 weeks. On day 43, all animals were sacrificed and the knee articular cartilage and also histomorphometric parameters of subchondral bone and mid shaft of tibia were evaluated. Results: Results showed mild OA in both male and female runner groups. Results in male runner rats were significantly lesser than that in female runners. On the other hand, the difference in female runner group showed significant changes in comparison with other groups in histomorphometric parameters in tibia. Conclusions: Obtained results showed that the development of knee OA and subchondral bone changes may be related to the sex differences. Although there was no synovitis in male runners, female runner group showed mild hyperaemia dropsy with a moderate synovitis in this region

    Continuous mode cooling and phonon routers for phononic quantum networks

    Get PDF
    We study the implementation of quantum state transfer protocols in phonon networks, where in analogy to optical networks, quantum information is transmitted through propagating phonons in extended mechanical resonator arrays or phonon waveguides. We describe how the problem of a non-vanishing thermal occupation of the phononic quantum channel can be overcome by implementing optomechanical multi- and continuous mode cooling schemes to create a 'cold' frequency window for transmitting quantum states. In addition, we discuss the implementation of phonon circulators and switchable phonon routers, which rely on strong coherent optomechanical interactions only, and do not require strong magnetic fields or specific materials. Both techniques can be applied and adapted to various physical implementations, where phonons coupled to spin or charge based qubits are used for on-chip networking applications.Comment: 33 pages, 8 figures. Final version, a few minor changes and updated reference

    Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Full text link
    The interaction of optical and mechanical modes in nanoscale optomechanical systems has been widely studied for applications ranging from sensing to quantum information science. Here, we develop a platform for cavity optomechanical circuits in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency field through the piezo-electric effect, or optically through the strong photoelastic effect. We use this to demonstrate a novel acoustic wave interference effect, analogous to coherent population trapping in atomic systems, in which the coherent mechanical motion induced by the electrical drive can be completely cancelled out by the optically-driven motion. The ability to manipulate cavity optomechanical systems with equal facility through either photonic or phononic channels enables new device and system architectures for signal transduction between the optical, electrical, and mechanical domains

    Electrically switching transverse modes in high power THz quantum cascade lasers.

    Get PDF
    The design and fabrication of a high power THz quantum cascade laser (QCL), with electrically controllable transverse mode is presented. The switching of the beam pattern results in dynamic beam switching using a symmetric side current injection scheme. The angular-resolved L-I curves measurements, near-field and far-field patterns and angular-resolved lasing spectra are presented. The measurement results confirm that the quasi-TM(01) transverse mode lases first and dominates the lasing operation at lower current injection, while the quasi-TM(00) mode lases at a higher threshold current density and becomes dominant at high current injection. The near-field and far-field measurements confirm that the lasing THz beam is maneuvered by 25 degrees in emission angle, when the current density changes from 1.9 kA/cm(2) to 2.3 kA/cm(2). A two-dimension (2D) current and mode calculation provides a simple model to explain the behavior of each mode under different bias conditions

    Electromagnetically Induced Transparency and Slow Light with Optomechanics

    Get PDF
    Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nano-fabrication techniques. To date, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to strong nonlinear effects such as Electromagnetically Induced Transparency (EIT) and parametric normal-mode splitting. In atomic systems, seminal experiments and proposals to slow and stop the propagation of light, and their applicability to modern optical networks, and future quantum networks, have thrust EIT to the forefront of experimental study during the last two decades. In a similar fashion, here we use the optomechanical nonlinearity to control the velocity of light via engineered photon-phonon interactions. Our results demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal device, fabricated by simply etching holes into a thin film of silicon (Si). At low temperature (8.7 K), we show an optically-tunable delay of 50 ns with near-unity optical transparency, and superluminal light with a 1.4 microseconds signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature and in the analogous regime of Electromagnetically Induced Absorption (EIA) show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.Comment: 15 pages, 9 figure

    Evidence for Two Superconducting Gaps in MgB2MgB_2

    Full text link
    We have measured the Raman spectra of polycrystalline MgB2_{2} from 25 {\cm} to 1200 {\cm}. When the temperature was decreased below the superconducting transition temperature TcT_c, we observed a superconductivity-induced redistribution in the electronic Raman continuum. Two pair-breaking peaks appear in the spectra, suggesting the presence of two superconducting gaps. Furthermore, we have analyzed the measured spectra using a quasi two-dimensional model in which two s-wave superconducting gaps open on two sheets of Fermi surface. For the gap values we have obtained Δ1=22cm1\Delta_1 = 22 cm^{-1} (2.7 meV) and Δ2=50cm1\Delta_2 = 50 cm^{-1} (6.2 meV). Our results suggest that a conventional phonon-mediated pairing mechanism occurs in the planar boron σ\sigma bands and is responsible for the superconductivity of MgB2_{2}.Comment: 3 figure

    Relation between the superconducting gap energy and the two-magnon Raman peak energy in Bi2Sr2Ca{1-x}YxCu2O{8+\delta}

    Full text link
    The relation between the electronic excitation and the magnetic excitation for the superconductivity in Bi2Sr2Ca{1-x}YxCu2O{8+\delta} was investigated by wide-energy Raman spectroscopy. In the underdoping region the B1g scattering intensity is depleted below the two-magnon peak energy due to the "hot spots" effects. The depleted region decreases according to the decrease of the two-magnon peak energy, as the carrier concentration ncreases. This two-magnon peak energy also determines the B1g superconducting gap energy as 2ΔαωTwoMagnonJeffective2\Delta \approx \alpha \hbar \omega_{\rm Two-Magnon} \approx J_{\rm effective} (α=0.340.41)(\alpha=0.34-0.41) from under to overdoping hole concentration.Comment: 10 pages, 4 figure

    Nonresonant inelastic light scattering in the Hubbard model

    Full text link
    Inelastic light scattering from electrons is a symmetry-selective probe of the charge dynamics within correlated materials. Many measurements have been made on correlated insulators, and recent exact solutions in large dimensions explain a number of anomalous features found in experiments. Here we focus on the correlated metal, as described by the Hubbard model away from half filling. We can determine the B1g Raman response and the inelastic X-ray scattering along the Brillouin zone diagonal exactly in the large dimensional limit. We find a number of interesting features in the light scattering response which should be able to be seen in correlated metals such as the heavy fermions.Comment: 9 pages, 7 figures, typeset with ReVTe
    corecore