38 research outputs found

    Analysis of artocarpus heterophyllus peel as a natural coagulant using response surface methodology (RSM)

    Get PDF
    The chemical coagulants used in the process of wastewater treatment causes negative implications on environment and human health. Exploration on natural coagulants as environmental friendly solution has been widely carried out. In present research, Artocarpus heterophyllus (jackfruit) peel is used as coagulant in treating domestic wastewater. This study aimed to assess optimum pH of wastewater and coagulant dosage by varying them to achieve the maximum removal rate of total suspended solid (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD) and turbidity. The studied range for pH of wastewater was pH 1-3 and dosage of coagulant within 50-70 mg/L. Response surface methodology (RSM) based on central composite design (CCD) implied in optimization of this coagulation process. Treatment using this natural coagulant enabled maximum reduction of turbidity, TSS, BOD and COD up to 80.7 %, 77.5 %, 34.3 % and 34.6 % respectively under optimum condition of pH 2.1 and dosage of 58 mg/L. These findings revealed higher reduction in turbidity and TSS. Thus, this study indicates the promising potential of the Artocarpus heterophyllus peel extract as an alternative bio-based coagulating agent for effective pre-treatment of wastewater

    Performance of jackfruit (Artocarpus heterophyllus) peel coagulant in turbidity reduction under different pH of wastewater

    Get PDF
    Presently, wastewater treatment using chemical coagulants has been major concern due to production of sludge in large volume, high costs and health effects. Thus, the use of plant-based coagulants has captivated researchers to overcome these problems. This study describes the effect of pH on coagulation process by using of jackfruit (Artocarpus heterophyllus) peel as coagulant. The coagulant from jackfruit peel was prepared by extraction method using distilled water. Synthetic sewage was used in this study to imitate medium strength domestic wastewater. Jar test experiment was carried out and the pH of wastewater was varied using hydrochloric acid and sodium hydroxide. After treated, the turbidity of the wastewater was measured to determine the percentage of reduction. The coagulant extracts were characterized using FTIR and zeta potential. It was observed that the jackfruit peel extract works the best as a coagulant at pH 2. Jackfruit peel coagulant can be used as primary treatment of the wastewater and believed to be an environmentally friendly alternative

    Performance analysis of charcoal barbeque set with an air ventilation system

    Get PDF
    The design of this air ventilation barbeque system is more efficient and user-friendly compared to the conventional barbeque set. A portable, easy to set up and flexible barbeque set for indoor and outdoor usage. It also improves barbeque quality by regulating the fitted blower attached to the barbeque set with a systematic air ventilation system. The meal needs less time to grill, and no manual fanning is needed

    Effect of hydrophobicity degree on PVDF hollow fiber membranes for textile wastewater treatment using direct contact membrane distillation

    Get PDF
    The objectives of this study are to study the effect of hydrophobicity degree of polyvinylidene fluoride (PVDF) hollow fiber membranes blended with different types of additives i.e. ethylene glycol (EG) and polyvinylpyrrolidone (PVP) on textile wastewater application. The degree of hydrophobicity of each membrane was analyzed using contact angle goniometer. The membrane morphology and gas permeability were characterized prior to filtration experiment. Both membranes were tested using direct contact membrane distillation (DCMD) system and their performances were evaluated with respect to water flux and dye removal. This study revealed that the membrane with higher contact angle has greater stability in terms of flux and dye rejection compared to the membrane with low hydrophobic property. This is mainly due to the low surface energy obtained by the highly hydrophobic membrane that prevented the liquids from both sides to penetrate through membrane pore

    Design and performance analysis of cooling tower

    Get PDF
    Cooling towers are widely used to dissipate process waste heat into the atmosphere. Based on the direct contact of two of the earth’s most common substances : air and wate

    Molecular recognition and interaction of polyamide thin film composite on the hydrophobic and hydrophilic polymeric subtract

    Get PDF
    Thin Film Composite Membranes (TFC) has drawn the researchers and industries due to the superior performance and long-lasting performance compare to pristine pervaporation membrane. TFC is a less than 0.2 μm active layer which layered on the subtract membrane mainly use in pervaporation. In order to obtain high mechanical strength in the support membrane, researchers prefer to apply for hydrophobic supports over to hydrophilic which often neglect the interaction between those membrane supports with the TFC. The success of the TFC membrane is, however, depending on how well TFC attached on support membrane as it is also related to the permeate penetration pathway. As the depositing of the TFC on the support layer however very crucial to be highlighted, this paper focus to examine the interaction molecules between TFC layer and different properties of the support membrane Nylon 6,6 (N66) and Polyvinylidene fluoride (PVDF) by using Molecular Dynamic (MD) simulation. The Condensed-Phase Optimized Molecular Potential for Atomistic Simulation Studies (COMPASS) force field was used with the total simulation runs were set 1000 picoseconds run production ensembles. The temperature and pressure set for both ensembles were 298 K and 1 atm respectively. The validity of our model densities was check and calculated show a good agreement with available experimental where the deviation less than 6%. The comparison between hydrophobic and hydrophilic of the support membrane was found as the larger contribution toward the distance and intensity of Radial Distribution Function (RDF’s) trends. The first interaction atom was at the distance 2.25 Å in the N66 system, meanwhile, 3.25 Å inside the PVDF system with the intensity of 2.97 and 1.04 Å respectively. This study purposed that the TFC deposition was better on the N66 membrane than on the PVDF membrane due to similar properties. The solubility in the tertiary system (when exposing monomers to polymeric subtracts) were not significant compared with the binary system in the provided simulation time. However, the balance of aqueous and organic monomers is necessary to avoid the swelling effect on the subtract membrane

    Evaluation of piper betle l. Extracts and its antivirulence activity towards p. Aeruginosa

    Get PDF
    The virulence factor of bacteria such as P. aeruginosa causes severe problems affecting human health and environmental quality. In this study, Piper betle undergoes an extraction process yielding extract to diminish the virulence factor of P. aeruginosa. The efficiency of Piper betle treatment on P. aeruginosa was measured using Pyoverdine assay. The different factors affected the Piper betle extract yield such as leaves to a solvent ratio (1:6 and 1:10), extraction method (maceration and sonication) and different solvents (methanol, ethanol, ethyl acetate and hexane) were tested. Pyoverdine assay illustrates ethyl acetate exhibits the lowest peak (OD630 = 0.2320) compared to methanol, ethanol and hexane due to the presence of a bioactive compound reducing the virulence factor. The ratio of 1:10 has a higher yield of 4.53±0.05 g and the ratio of 1:6 yields 2.86±0.05 g of extracts because of a better contact area. Maceration with agitation indicated the highest yield of 0.5210±0.05 g followed by maceration without agitation at 0.2660±0.05 g and 0.2792±0.05 g for sonication. The yield of Piper betle with different solvents showed the lowest yield is hexane 0.4741±0.05 g followed by ethyl acetate 2.4975±0.05 g, ethanol 3.7658±0.05 g and methanol 6.3331±0.05 g due to solvent polarity. This study aims to provide insightful knowledge of applied factor affecting Piper betle extracts and the ability of Piper betle as antivirulence and antibacterial agent against P. aeruginosa

    Fabrication and performance analysis of shell and tube heat exchanger system

    Get PDF
    The shell and tube heat exchangers (STHE) are still the most common type in uses. A typical STHE are built of round tubes mounted in a cylindrical shell with the tubes parallel to the shell. One fluid flow inside the tubes, while other fluid flows across the shell. STHE offer great flexibility to meet almost any service requirement

    Effect of design parameters of serpentine-shaped flat plate solar collector under Malaysia climate conditions

    Get PDF
    Solar thermal energy plays a vital role in the industrial sector, especially for water heating applications. Further research to improve the efficiency of flat plate solar collectors by focusing on collector design modification is imperative. This research aimed to carry out an experimental investigation on comparative designs and fabrication approaches that deal with the analysis of flat plate solar collector thermal performance, thermal efficiency, the effect of various mass flow rates, and pressure drop analyses. In this paper, a different design modification of pipe collector with serpentine-shaped was established with different tube diameters (3/4-inch and 3/8-inch), and different pipe spacing (18.5 cm and 27.0 cm). Under the same heat radiation intensity and constant mass flow rate, a pipe collector with a tube diameter of 3/4-inch achieved 3.5% and 9.4% higher thermal performance and collector efficiency respectively compared to the tube diameter of 3/8-inch. Furthermore, the pipe collector with pipe spacing of 18.5 cm exhibited 4.3% and 12.6% higher thermal performance and collector efficiency respectively compared to pipe spacing of 27 cm. The relationship between collector efficiency and temperature difference was also investigated. Moreover, the effect of different mass flow rates was studied upon and it was found that a flow rate of 0.03 kg/s exhibited optimum thermal performance for the pipe collector. Additionally, a pressure drop was observed with the increase in flow rate, while decreases when the fluid temperature increase

    Insights into membrane distillation application for textile wastewater treatment – A review

    Get PDF
    Textile wastewater must be effectively treated with the best available technology prior to release to receiving water bodies to prevent its impact on the environment. Apparently, membrane distillation shows great potential in treating textile wastewater a part of the complexity of the textile wastewater composition. This membrane process enables the water vapour to pass through its porous hydrophobic membrane and retains the concentrated pollutants to be transported. This paper provides data and information from previous studies using membrane distillation to treat textile wastewater. An overview of the development of membrane distillation as well as the fundamental theory is presented. Recent progress in the application of membrane distillation in textile wastewater is then discussed. The final part of the paper looked at the future orientation of this technology to be acceptable in the industrial sector, especially for the textile industry
    corecore