28 research outputs found

    Softening-based interface model and nonlinear load-settlement response analysis of piles in saturated and unsaturated multi-layered soils

    Get PDF
    This work presents a simplified method for the nonlinear analysis of the load-displacement response of piles in multi-layered soils. A new interface model based on the disturbed state concept (DSC) is put forth to simulate the interface shear stress-displacement relationship by considering the nonlinear hardening-softening behaviour. In the new model, input parameters can be conveniently calibrated using conventional interface shear tests or on-site tests.The good agreement between predictions and experimental data from interface direct shear tests validated the performance of the proposed DSC model. The DSC model performed better in terms of predictions when compared to the hyperbolic one. Next, the soil-structure interface model and bearing capacity theory are coupled to provide a theoretical framework for the analysis of pile load-transfer in saturated and unsaturated multi-layered soils, where the DSC model is employed to represent base resistance as well as skin friction. This work also discusses the profile of steady-state in-situ matric suction, soil-water characteristic curve, and pore-water pressure of unsaturated soils. The proposed method has the advantage of being used in practice as it is simple to obtain input parameters from laboratory tests, as well as Standard Penetration or Cone Penetration Tests. The proposed framework is finally applied to the analysis of four well-documented case studies. The proposed approach and the static load test results from the field measurements are found to be in satisfactory agreement, indicating that the proposed method performs well. The proposed method is suggested to be utilised for preliminary analysis, planning a suitable programme of loading tests, as well as optimizing the pile design by back analysis of the load test results

    Micro computed tomography images of capillary actions in rough and irregular granular materials

    Get PDF
    The present work investigates the effect of both surface roughness and particle morphology on the retention behaviour of granular materials via X-ray micro-computed tomography (µCT) observations. X-ray µCT images were taken on two types of spherical glass beads (i.e. smooth and rough) and two different sands (i.e. natural and roughened). Each sample was subjected to drainage and soaking paths consisting in a multiphase ‘static’ flow of potassium iodine (KI) brine (wetting phase) and dry air (non-wetting phase). Tomograms were obtained at different saturation states ranging from fully brine saturated to air dry conditions with 6.2 μm voxel size resolution. The data acquisition and pre-processing are here described while all data, a total of 48 tomograms, are made publicly available. The combined dataset offers new opportunities to study the influence of surface roughness and particle morphology on capillary actions as well as supporting validation of pore-scale models of multiphase flow in granular materials

    CFD modelling of the effect of capillary pressure on retention behaviour of water menisci at inter-particle contacts

    Get PDF
    This paper presents a Computational Fluid Dynamics (CFD) model on the effect of capillary pressure on the retention behaviour of a granular material. The model proposes an unprecedented CFD insight into the onset of liquid menisci at the inter-particles contact under varying hydraulic conditions. The present work models the material grains as smooth spherical particles that define a porous network filled by two interstitial fluids: air and silicon oil. The numerical model has been subsequently validated against experimental measurements of the degree of saturation at different capillary pressures taken by Dullien et al. [F.A. Dullien, C. Zarcone, I.F. MacDonald, A. Collins, R.D. Bochard. J. Colloid Interface Sci. 127, 2 (1989)] in a system of smooth glass beads flooded with silicon oil. Results from the numerical simulations confirm the good capability of the model to reproduce the experimental retention behaviour of the granular material. Finally, the present paper laid the basis for future CFD studies on the effect of various factors (e.g. hydraulic hysteresis, surface roughness and/or grain shape) on the capillary pressure acting at the interparticle contact

    Softening-based interface model and nonlinear load-settlement response analysis of piles in saturated and unsaturated multi-layered soils

    Get PDF
    This work presents a simplified method for the nonlinear analysis of the load–displacement response of piles in multi-layered soils. As a starting step, a new interface model based on the disturbed state concept (DSC) is put forth to simulate the interface shear stress-displacement relationship by considering the nonlinear hardening–softening behaviour. In the new model, input parameters can be conveniently calibrated using conventional interface shear tests or on-site tests. The good agreement between predictions and experimental data from interface direct shear tests validated the performance of the proposed DSC model. The DSC model performed better in terms of predictions when compared to the hyperbolic one. Next, the soil-structure interface model and bearing capacity theory are coupled to provide a theoretical framework for the analysis of pile load-transfer in saturated and unsaturated multi-layered soils, where the DSC model is employed to represent base resistance as well as skin friction. This work also discusses the profile of steady-state in-situ matric suction, soil–water characteristic curve, and pore-water pressure of unsaturated soils. The proposed method has the advantage of being used in practice as it is simple to obtain input parameters from laboratory tests, as well as Standard Penetration or Cone Penetration Tests. The proposed framework is finally applied to the analysis of five well-documented case studies. The proposed approach and the static load test results from the field measurements are found to be in satisfactory agreement, indicating that the proposed method performs well. The proposed method is suggested to be utilised for preliminary analysis, planning a suitable programme of loading tests, as well as optimizing the pile design by back analysis of the load test results.</p

    Softening-based interface model and nonlinear load-settlement response analysis of piles in saturated and unsaturated multi-layered soils

    No full text
    This work presents a simplified method for the nonlinear analysis of the load–displacement response of piles in multi-layered soils. As a starting step, a new interface model based on the disturbed state concept (DSC) is put forth to simulate the interface shear stress-displacement relationship by considering the nonlinear hardening–softening behaviour. In the new model, input parameters can be conveniently calibrated using conventional interface shear tests or on-site tests. The good agreement between predictions and experimental data from interface direct shear tests validated the performance of the proposed DSC model. The DSC model performed better in terms of predictions when compared to the hyperbolic one. Next, the soil-structure interface model and bearing capacity theory are coupled to provide a theoretical framework for the analysis of pile load-transfer in saturated and unsaturated multi-layered soils, where the DSC model is employed to represent base resistance as well as skin friction. This work also discusses the profile of steady-state in-situ matric suction, soil–water characteristic curve, and pore-water pressure of unsaturated soils. The proposed method has the advantage of being used in practice as it is simple to obtain input parameters from laboratory tests, as well as Standard Penetration or Cone Penetration Tests. The proposed framework is finally applied to the analysis of five well-documented case studies. The proposed approach and the static load test results from the field measurements are found to be in satisfactory agreement, indicating that the proposed method performs well. The proposed method is suggested to be utilised for preliminary analysis, planning a suitable programme of loading tests, as well as optimizing the pile design by back analysis of the load test results.</p
    corecore