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Abstract. The mechanical interaction between two bodies involves normal loading in combination with 
tangential, torsional and rotational loading.  This paper focuses on the torsional loading of two spherical 
bodies which leads to twisting moment.  The theoretical approach for calculating twisting moment between 
two spherical bodies has been proposed by Lubkin [1].  Due to the complexity of the solution, this has been 
simplified by Deresiewicz for discrete element modelling [2].  Here, the application of a simplified model 
for elastoplastic spheres is verified using computational modelling.  The single grain interaction is simulated 
in a combined finite discrete element domain. In this domain a grain can deform using a finite element 
formulation and can interact with other objects based on discrete element principles.  For an elastoplastic 
model, the contact area is larger in comparison with the elastic model, under a given normal force.  
Therefore, the plastic twisting moment is stiffer. The results presented here are important for describing any 
granular system involving torsional loading of elastoplastic grains.  In particular, recent research on the 
behaviour of soil has clearly shown the importance of plasticity on grain interaction and rearrangement. 

1 Background  

Mathematical models have been incorporated into 
discrete modelling of granular system describing the 
force-displacement relationship between two contacting 
rigid bodies.  This has proven the reliability in 
simulating granular materials such as soil [3, 4].  The 
interaction includes normal contact with relative contact 
area motions such as sliding, rolling or spinning.  The 
spinning around the axis of the contact normal creates a 
twisting moment (MT).  When MT in combination with 
normal loading is applied to two grains in contact, the 
contact area will undergo some angular displacement (β).  
The shear forces at the contact will provide some 
resistance to sliding.  Depending on the distribution of 
normal forces, the region that meets the Coulomb 
friction condition will experience sliding and the rest of 
the contact area will undergo sticking [5, 6]. The 
schematic of this mixed boundary problem for two 
identical spheres in contact where stick and slip regions 
coexist is shown in Fig. 1. 
The relationship between the applied moment and the 
radius of stick region can be written as follows: 
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where q(r) is torsional shear traction that is a function of 
r, the radial position from centre of the contact area.  If c 

≤ r ≤ a, the traction is limited to q(r)=µFN(r). 
 
 
 

 
Fig. 1. Contact area including stick and slip regions for two 
identical spheres subjected to torsional moment and normal 
loading. 

 
Lubkin (1951) delivers the solution to this problem by 
proposing an equation to define the shear stress at the 
contact surface within the stick region [1].  By 
combining Lubkin’s solution with normal force 
distribution, the twisting moment can be obtained from 
the following expression [1, 5]: 
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 where 2)/(1 ack �� , 
a

c
k ��  and cr /sin �� .    

D(k) is the complete elliptical integral with modulus K, 
given by D(k)=(K-E)/k2 with K and E being the 
complete elliptical integrals of the first and second type, 
respectively.  
Given the complexity of Eq. 1, a simplified solution was 
proposed by Deresiewicz (1954) between a, MT and β
based on an explicit approximation for numerical 
modelling which is defined as follows: 
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 where G is the shear modulus. Therefore, the 
torsional stiffness can be specified as: 
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It is important to note that the Eqs. 3 and 4 are only 
applicable for small values of twisting moment where 
MT/μFNa <<1 [5].  Fig. 2 shows a non-dimensional 
moment-twist profile derived from Eq. 3. 
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Fig. 2. Non-dimensional relationship between torque and 
twisting angle for spherical grains. 

Despite the development of this theoretical approach for 
the elastic interaction of spheres in the fifties, the 
elastoplastic interaction under torsion has not been 
verified yet, as discussed in Thornton [4]. 

In this paper, the problem is replicated in the framework 
of a finite-discrete element method [7].  In this 
framework, a continuum body can deform using finite 
element formulation and can interact with other objects 
(rigid and deformable) based on the law of motion, i.e. 
Newton’s second law, used in discrete element 
modelling.  Firstly, the elastic behaviour of a sphere in 
contact is verified against theoretical equations.  Then, 
the elastoplastic behaviour is presented.  The aim of this 
study is to investigate the applicability of Deresiewicz’s 
solution for elastoplastic grains in contact under twisting 

moment.  The results have implications for describing a 
granular system with elastoplastic grains. 

2 Elastic interaction  

The interaction of two identical spheres in contact is 
simplified, due to symmetry, by the interaction of a 
sphere in contact with a rigid plate.  In order to apply 
pure torsion to a deformable sphere, a rigid core was 
generated inside the sphere and was tied to the sphere 
(Fig. 3).  Fig. 4 shows the numerical mesh of the 
problem in Abaqus software package [8].  The sphere 
has a diameter of 2.2mm and is represented by a mesh 
formed by 60,743 elements and 18,112 nodes.  The mesh 
at the contact area was refined for a more accurate 
presentation of the problem.  The material parameters 
used in the simulation are listed in Table 1.  Explicit time 
discretization was employed to allow for future work on 
a large number of grains, since the implicit time 
discretization is computationally very expensive.  The 
property of hard contact was defined between the sphere 
and the plate.  Using ‘hard contact’ behaviour means that 
all the force is transmitted through the contact.  Due to 
body deformability, the relation of normal force versus 
normal displacement with hard contact assumption 
follows exactly Hertzian theory [6, 9]. 
The simulation includes two steps: normal loading and 
torsional loading.  In step one, controlled displacement 
of 10μm was applied to the sphere in the normal 
direction, which corresponds to 95N normal loading for 
this problem.  In the second step, the sphere was purely 
rotated around the contact normal using controlled 
angular displacement of 0.04rad. 
 

 

Fig. 3. Schematic showing the inner core and cut section of the 
deformable sphere. 

 

Table 1. Physical and mechanical parameters of the spheres. 

Elastic modulus E (GPa) 63

Poisson ratio ʋ (-) 0.3

Density ρ (gr/mm3) 2.5

Friction coefficient μ (-) 0.22

Diameter D (mm) 2.2
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Fig. 4. Meshed sphere in contact with the rigid plate; mesh 
defined by smaller elements in the contact area. 

The comparison between Deresiewicz theory and the 
numerical simulation is presented in Fig. 5. The plot 
shows a good agreement between the numerical model 
and theory.  As can be seen in Fig. 5, there is a small 
discrepancy in the angular displacement (β) 
corresponding to the occurrence of pure slipping. 
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Fig. 5. Comparison between theory and numerical modelling 
for elastic interaction of two identical elastic spheres. 
 

3 Elastoplastic interaction  

The torsional interaction becomes plastic when the yield 
strength is reached in normal loading.  This is 
particularly important for soil grains due to initial 
contact plasticity [4, 9].  The contact area would be 
larger for elastoplastic interaction in comparison with 
elastic interaction for a given normal load.  Therefore, 
pure shear force shows higher tangential stiffness [4].  It 
is also expected to observe higher stiffness (kt) due to the 
larger radius of contact area (a) in torsional loading. 

To incorporate the plastic behaviour in numerical 
modelling, isotropic hardening constitutive laws were 
assigned to the sphere.  It is assumed that the material 
yields at 100MPa and then hardens with hardening 
modulus of 20GPa (Table 2).  The stress:strain relation 
assigned to the material is shown in Fig. 6. 

The simulation steps were exactly the same as for the 
elastic model.  In order to keep the normal load of 95N, a 
47μm controlled displacement was applied in the normal 
direction which changes the ‘a’ value from 149μm (for 

elastic) to 319μm for plastic interaction.  This was 
obtained by trial and error.  In the second step, controlled 
angular displacement of 0.04rad was applied to the 
sphere around the contact normal. 
 

Table 2. Isotropic hardening parameters used. 

Yield strength Y (MPa) 100

Hardening modulus Et (GPa) 20

 
Fig. 7 shows the comparison of the numerical 
simulations for elastic and elastoplastic interaction in 
terms of twisting moment and angular displacement.  It 
can be seen that the value of plastic twisting moment is 
2.5 times the elastic twisting moment for a constant 
normal loading, while the contact area was nearly 
doubled.  The normalised twisting moment, presenting in 
Fig. 8, shows that the plastic interaction is stiffer than the 
elastic interaction and pure slipping occurs at smaller 
values of angular displacement.  Finally, the comparison 
of the theoretical, elastic and plastic models for 
normalised twisting moment versus normalised angular 
displacement are presented in Fig. 9.  The good 
agreement observed, suggests the applicability of 
Deresiewicz solution for elastoplastic interaction. 
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Fig. 6. Stress:strain for isotropic hardening material used in the 
simulation. 
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Fig. 7. Comparison between the numerical modelling of elastic 
and plastic interaction of two identical spheres under torsion 
and constant normal loading. 
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Fig. 8. Comparison between the normalised twisting moments 
derived from numerical modelling of elastic and plastic 
interaction of two identical spheres under torsion and constant 
normal loading. 
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Fig. 9. Comparison between the numerical modelling of elastic
and plastic interaction and Deresiewicz’s solution of two 
identical spheres under torsion and constant normal loading. 
 

4 Closing remarks 

This study makes use of the general contact model for 
two identical spherical grains twisted around their 
contact normal as proposed by Lubkin and later 
simplified by Deresiewicz.  The formulations proposed 
were verified for elastic and more importantly for 
elastoplastic interactions by means of a finite-discrete 
element method.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
It was shown that the plastic torsional interaction is 
much stiffer than the elastic interaction.  This is due to 
the larger contact area for plastic interaction under a 
given normal force.  It was also presented that pure 
slipping occurs at smaller values of angular displacement 
for plastic interaction.  The data presented here confirm 
the applicability of Deresiewicz’s solution for 
elastoplastic torsional interaction. 
 

 
The first author would like to express thanks to City, 
University of London for his doctoral scholarship. 
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