1,413 research outputs found

    Crystal structure of 2-((1E)-{2-[bis(2-methylbenzylsulfanyl) methylidene]-hydrazin-1-ylidene}methyl)-6-methoxy-phenol

    Get PDF
    We thank the Department of Chemistry, Universiti Putra Malaysia for facilities. This research was funded by Universiti Putra Malaysia (UPM) and the Malaysian Government under the Geran UPM Scheme (RUGS No. IBT/2013/9419400), the Malaysian Fundamental Research Grant Scheme (FRGS No.01–02-13–1344FR) and the ScienceFund under the Ministry of Science, Technology and Innovation (MOSTI 06–01-04-SF1810). ENMY wishes to thank UPM for the award of a Graduate Research Fellowship.Peer reviewedPublisher PD

    Bis{4-methylbenzyl 2-[4-(propan-2-yl)benzylidene]hydrazinecarbodithioato-κ2N2,S}nickel(II): crystal structure and Hirshfeld surface analysis

    Get PDF
    The complete molecule of the title hydrazine carbodithioate complex, [Ni(C19H21N2S2)2], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodithioate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C—H...π(benzene-iPr), iPr-C—H...π(p-tolyl) and π–π interactions [between p-tolyl rings with inter-centroid distance = 3.8051 (12) Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing

    A cinnamaldehyde Schiff base ofS-(4-methylbenzyl) dithiocarbazate: crystal structure, Hirshfeld surface analysis and computational study

    Get PDF
    The title dithiocarbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methylbenzyl 2-[(E)-3-phenylallylidene]hydrazinecarbodithioate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methylene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the molecule approximates mirror symmetry with the 4-tolyl group bisected by the plane. The configuration about both double bonds in the N—N=C—C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thioamide synthons, {...HNCS}2, are formed via N—H...S(thione) hydrogen bonds. Connections between the dimers via C—H...π interactions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an interaction profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N—H...S hydrogen bonds is about 0.94 kcal mol−1 more stable than that in (I)

    Progesterone utility in the synthesis of steroidal heterocyclic compounds with antitumor activity

    Get PDF
    One–pot and efficient method for the synthesis of progesteronpyridine 5a-c, 6a-c and 7a,b and/or progesteronpyran derivatives 9a-c and 10a,b by condensation reaction of progesterone 1 with different aldehydes and active methylene compounds in the presence of ammonium acetate or piperidine.  New progesteronopyrimidine derivatives 12a-d and 13a, b were synthesized via interaction of progesterone 1 with urea or thiourea and/or guanidine reagents and aldehyde. Progesterone 1 was examined to synthesize heterocyclic compound 16 containing ?-Lactone chiral carbon via the reaction of hydrazone derivative 14 with phenyl isothiocyanate followed by boiling with chloroacetic acid in benzene. The biological activity of compounds 5a, 5b, 6b, 7a, 9b, 9c, 12a, 12c, and 13a were evaluated as growth inhibitors of the liver and the breast carcinoma human cell line (HEPG2 & MCF7). Compounds 13a, 12a and 7a showed a higher potency than the standard. Key Words: Progesterone, MCR’s (multicomponents reaction), (pyridine, pyran, pyrimidine, ?-Lactone) derivatives, HEPG2 & MCF7

    Newton-raphson method to solve systems of non-linear equations in VANET performance optimization

    Get PDF
    Nowadays, Vehicular Ad-Hoc Network (VANET) has got more attention from the researchers. The researchers have studied numerous topics of VANET, such as the routing protocols of VANET and the MAC protocols of VANET. The aim of their works is to improve the network performance of VANET, either in terms of energy consumption or packet delivery ratio (PDR) and delay. For this research paper, the main goal is to find the coefficient of a, b and c of three non-linear equations by using a Newton-Raphson method. Those three non-linear equations are derived from a different value of Medium Access Control (MAC) protocol's parameters. After that, those three coefficient is then will be used in optimization of the VANET in terms of energy, PDR, and delay

    Microwave-assisted synthesis and antitumor evaluation of a new series of thiazolylcoumarin derivatives

    Get PDF
    A new series of thiazolylcoumarin derivatives was synthesized. The designed strategy embraced a molecular hybridization approach which involves the combination of the thiazole and coumarin pharmacophores together. The new hybrid compounds were tested for in vitro antitumor efficacy over cervical (Hela) and kidney fibroblast (COS-7) cancer cells. Compounds 5f, 5h, 5m and 5r displayed promising efficacy toward Hela cell line. In addition, 5h and 5r were found to be the most active candidates toward COS-7 cell line. The four active analogs, 5f, 5h, 5m and 5r were screened for in vivo antitumor activity over EAC cells in mice, as well as in vitro cytotoxicity toward W138 normal cells. Results illustrated that 5r has the highest in vivo activity, and that the four analogs are less cytotoxic than 5-FU toward W138 normal cells. In this study, 3D pharmacophore analysis was performed to investigate the matching pharmacophoric features of the synthesized compounds with trichostatin A. In silico studies showed that the investigated compounds meet the optimal needs for good oral absorption with no expected toxicity hazards

    o-Vanillin derived Schiff Bases and their Organotin(IV) Compounds: Synthesis, structural characterisation, in-Silico studies and cytotoxicity

    Get PDF
    Six new organotin(IV) compounds of Schiff bases derived from S-R-dithiocarbazate [R = benzyl (B), 2- or 4-methylbenzyl (2M and 4M, respectively)] condensed with 2-hydroxy-3- methoxybenzaldehyde (oVa) were synthesised and characterised by elemental analysis, various spectroscopic techniques including infrared, UV-vis, multinuclear (1H, 13C, 119Sn) NMR and mass spectrometry, and single crystal X-ray diffraction. The organotin(IV) compounds were synthesised from the reaction of Ph2SnCl2 or Me2SnCl2 with the Schiff bases (S2MoVaH/S4MoVaH/SBoVaH) to form a total of six new organotin(IV) compounds that had a general formula of [R2Sn(L)] (where L = Schiff base; R = Ph or Me). The molecular geometries of Me2Sn(S2MoVa), Me2Sn(S4MoVa) and Me2Sn(SBoVa) were established by X-ray crystallography and verified using density functional theory calculations. Interestingly, each experimental structure contained two independent but chemically similar molecules in the crystallographic asymmetric unit. The coordination geometry for each molecule was defined by thiolate-sulphur, phenoxide-oxygen and imine-nitrogen atoms derived from a dinegative, tridentate dithiocarbazate ligand with the remaining positions occupied by the methyl-carbon atoms of the organo groups. In each case, the resulting five-coordinate C2NOS geometry was almost exactly intermediate between ideal trigonal-bipyramidal and squarepyramidal geometries. The cytotoxic activities of the Schiff bases and organotin(IV) compounds were investigated against EJ-28 and RT-112 (bladder), HT29 (colon), U87 and SJ-G2 (glioblastoma), MCF-7 (breast) A2780 (ovarian), H460 (lung), A431 (skin), DU145 (prostate), BE2-C (neuroblastoma) Int. J. Mol. Sci. 2019, 20, 854 2 of 34 and MIA (pancreatic) cancer cell lines and one normal breast cell line (MCF-10A). Diphenyltin(IV) compounds exhibited greater potency than either the Schiff bases or the respective dimethyltin(IV) compounds. Mechanistic studies on the action of these compounds against bladder cancer cells revealed that they induced the production of reactive oxygen species (ROS). The bladder cancer cells were apoptotic after 24 h post-treatment with the diphenyltin(IV) compounds. The interactions of the organotin(IV) compounds with calf thymus DNA (CT-DNA) were experimentally explored using UV-vis absorption spectroscopy. This study revealed that the organotin(IV) compounds have strong DNA binding affinity, verified via molecular docking simulations, which suggests that these organotin(IV) compounds interact with DNA via groove-binding interactions
    corecore