brought to you by provided by Aberdeen University R

CrossMark

data reports

CRYSTALLOGRAPHIC COMMUNICATIONS

OPEN a ACCESS

ethylene bridge, and with a terminal furan-2-yl ring, i.e. N-1,3dithiolan-2-ylidene-N'-[(E)-furan-2-ylmethylidene]hydrazone, see: Liu et al. (2008).

& Tarafder (1977); Tarafder et al. (2002); Manan et al. (2012).

For a related structure but with the S atoms connected by an

Crystal structure of 2-((1*E*)-{2-[bis(2methylbenzylsulfanyl)methylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol

Enis Nadia Md Yusof,^a Thahira Begum S. A. Ravoof,^a* Mohamed Ibrahim Mohamed Tahir^a and Edward R. T. **Tiekink^b**

^aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: thahira@upm.edu.my

Received 9 March 2015; accepted 11 March 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{25}H_{26}N_2O_2S_2$, the central CN_2S_2 atoms are almost coplanar (r.m.s. deviation = 0.0058 Å). One phenyl ring clearly lies to one side of the central plane, while the other is oriented in the plane but splayed. Despite the different relative orientations, the phenyl rings form similar dihedral angles of 64.90 (3) and 70.06 $(3)^{\circ}$ with the central plane, and $63.28 (4)^{\circ}$ with each other. The benzene ring is twisted with respect to the central plane, forming a dihedral angle of 13.17 (7)°. The $S_2C=N$, N-N and N-N=C bond lengths of 1.2919 (19), 1.4037 (17) and 1.2892 (19) Å, respectively, suggest limited conjugation over these atoms; the configuration about the N-N=C bond is E. An intramolecular O- $H \cdots N$ hydrogen bond is noted. In the crystal, phenylmethoxy C-H···O and phenyl-phenyl C-H··· π interactions lead to supramolecular double chains parallel to the b axis. These are connected into a layer via methyl-phenyl C- $H \cdots \pi$ interactions, and layers stack along the *a* axis, being connected by weak π - π interactions between phenyl rings [inter-centroid distance = 3.9915(9)Å] so that a threedimensional architecture ensues.

Keywords: crystal structure; S-substituted dithiocarbazates; hydrogen bonding; C—H··· π interactions; π – π interactions.

CCDC reference: 1053188

1. Related literature

For background to the coordination chemistry of dithiocarbazate derivatives, see: Tarafder et al. (2002); Ravoof et al. (2010, 2011); Omar et al. (2014). For related synthesis, see: Ali

 $V = 2188.31 (12) \text{ Å}^3$

 $0.25 \times 0.11 \times 0.08 \text{ mm}$

40860 measured reflections

4248 independent reflections

3956 reflections with $I > 2\sigma(I)$

Cu $K\alpha$ radiation

 $\mu = 2.41 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.033$

Z = 4

2. Experimental

2.1. Crystal data

C25H26N2O2S2 $M_r = 450.60$ Monoclinic, $P2_1/c$ a = 19.7865 (7) Å b = 6.8600 (2) Åc = 16.1805 (5) Å $\beta = 94.880(3)^{\circ}$

2.2. Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.715, \ T_{\max} = 1.000$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.094$	independent and constrained
S = 1.04	refinement
4248 reflections	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
286 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3–C8 ring.

$D - H \cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1O\cdots N2$	0.84 (2)	1.87 (2)	2.6331 (16)	151 (2)
$C5-H5\cdots O2^{i}$	0.95	2.44	3.3868 (18)	176
$C7 - H7 \cdots Cg1^i$	0.95	2.68	3.5046 (15)	146
$C9 - H9B \cdots Cg1^{ii}$	0.98	2.72	3.5482 (17)	142

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Acknowledgements

We thank the Department of Chemistry, Universiti Putra Malaysia for facilities. This research was funded by Universiti Putra Malaysia (UPM) and the Malaysian Government under the Geran UPM Scheme (RUGS No. IBT/2013/9419400), the Malaysian Fundamental Research Grant Scheme (FRGS No. 01–02-13–1344FR) and the ScienceFund under the Ministry of Science, Technology and Innovation (MOSTI 06–01-04-SF1810). ENMY wishes to thank UPM for the award of a Graduate Research Fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7379).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Ali, M. A. & Tarafder, M. T. (1977). J. Inorg. Nucl. Chem. **39**, 1785–1791. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Liu, Y.-H., Li, Z.-G., Yang, L.-J. & Liu, X. L. (2008). J. Chem. Crystallogr. 38, 867–871.

- Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173–179.
- Omar, S. A., Ravoof, T. B. S. A., Tahir, M. I. M. & Crouse, K. A. (2014). *Transition Met. Chem.* 39, 119–126.
- Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). *Transition Met. Chem.* 35, 871–876.
- Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., Watkin, D. J. & How, F. N. F. (2011). J. Chem. Crystallogr. 41, 491–495.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H-K. (2002). Polyhedron, 21, 2683–2690.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o242-o243 [doi:10.1107/S2056989015004946]

Crystal structure of 2-((1*E*)-{2-[bis(2-methylbenzylsulfanyl)methylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol

Enis Nadia Md Yusof, Thahira Begum S. A. Ravoof, Mohamed Ibrahim Mohamed Tahir and Edward R. T. Tiekink

S1. Experimental

The synthesis of *S*-2-methylbenzyldithiocarbazate (S2MBDTC) was accomplished as reported previously (Ravoof *et al.*, 2011). The title compound was synthesized following an established literature procedure (Ravoof *et al.*, 2011). S2MBDTC (2.12.g, 0.01 mol) was dissolved in hot acetonitrile (150 ml). This was added to an equimolar solution of 2-hydroxy-3-methoxybenzaldehyde (1.52 g, 0.01 mol) in ethanol (20 ml). The mixture was heated and stirred for 30 min and then allowed to stand for a few hours. The yellow crystals formed were filtered off and recrystallized from aceto-nitrile. Pale-yellow plates were obtained after 1 week by keeping the solution at room temperature.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$. The O—H H atom was refined with O—H = 0.84±0.01 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound showing displacement ellipsoids at the 70% probability level.

Figure 2

A view of the unit-cell contents in projection down the b axis. The C—H···O, C—H··· π and π — π interactions are shown as orange, purple and pink dashed lines, respectively.

2-((1E)-{2-[Bis(2-methylbenzylsulfanyl)methylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol

Crystal data

 $C_{25}H_{26}N_2O_2S_2$ $M_r = 450.60$ Monoclinic, $P2_1/c$ *a* = 19.7865 (7) Å b = 6.8600 (2) Åc = 16.1805 (5) Å $\beta = 94.880 \ (3)^{\circ}$ $V = 2188.31 (12) \text{ Å}^3$ Z = 4

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer Radiation source: fine-focus sealed tube $R_{\rm int} = 0.033$ Graphite monochromator Detector resolution: 16.1952 pixels mm⁻¹ $h = -24 \rightarrow 24$ ω scans $k = -8 \rightarrow 8$ Absorption correction: multi-scan $l = -19 \rightarrow 19$ (CrysAlis PRO; Agilent, 2011) $T_{\rm min} = 0.715, T_{\rm max} = 1.000$

F(000) = 952 $D_{\rm x} = 1.368 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.5418$ Å Cell parameters from 17455 reflections $\theta = 3.4 - 71.3^{\circ}$ $\mu = 2.41 \text{ mm}^{-1}$ T = 100 KPlate, pale-yellow $0.25\times0.11\times0.08~mm$

40860 measured reflections 4248 independent reflections 3956 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 71.4^{\circ}, \ \theta_{\text{min}} = 4.5^{\circ}$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.035$	and constrained refinement
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_o^2) + (0.0589P)^2 + 0.9765P]$
<i>S</i> = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4248 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
286 parameters	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.31760 (2)	0.15598 (5)	0.33906 (2)	0.01851 (11)
S2	0.22443 (2)	0.01673 (5)	0.46350 (2)	0.01756 (11)
O1	0.29427 (6)	0.56093 (16)	0.18572 (7)	0.0234 (2)
H1O	0.2807 (10)	0.492 (3)	0.2236 (10)	0.035*
O2	0.32372 (5)	0.83198 (15)	0.08026 (7)	0.0220 (2)
N1	0.19930 (6)	0.32696 (18)	0.36803 (7)	0.0176 (3)
N2	0.22172 (6)	0.44896 (18)	0.30629 (7)	0.0173 (3)
C1	0.24117 (7)	0.1860 (2)	0.38658 (8)	0.0159 (3)
C2	0.36133 (8)	-0.0340 (2)	0.40266 (10)	0.0219 (3)
H2A	0.3653	0.0069	0.4615	0.026*
H2B	0.3345	-0.1559	0.3981	0.026*
C3	0.43130 (7)	-0.0713 (2)	0.37492 (9)	0.0184 (3)
C4	0.48507 (8)	0.0607 (2)	0.39319 (9)	0.0179 (3)
C5	0.54953 (8)	0.0092 (2)	0.37141 (9)	0.0191 (3)
Н5	0.5862	0.0971	0.3829	0.023*
C6	0.56105 (8)	-0.1674 (2)	0.33335 (9)	0.0205 (3)
H6	0.6055	-0.2002	0.3200	0.025*
C7	0.50798 (8)	-0.2964 (2)	0.31473 (9)	0.0214 (3)
H7	0.5157	-0.4175	0.2886	0.026*
C8	0.44318 (8)	-0.2458 (2)	0.33495 (9)	0.0210 (3)
H8	0.4064	-0.3322	0.3212	0.025*
C9	0.47480 (8)	0.2536 (2)	0.43450 (10)	0.0229 (3)
H9A	0.5178	0.3254	0.4400	0.034*
H9B	0.4592	0.2315	0.4896	0.034*
H9C	0.4407	0.3296	0.4008	0.034*
C10	0.14184 (7)	0.0968 (2)	0.49331 (9)	0.0180 (3)
H10A	0.1365	0.0506	0.5503	0.022*
H10B	0.1411	0.2411	0.4943	0.022*
C11	0.08218 (7)	0.0259 (2)	0.43695 (9)	0.0180 (3)
C12	0.06032 (7)	-0.1688 (2)	0.43911 (9)	0.0189 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.00459 (8)	-0.2245 (2)	0.38554 (9)	0.0228 (3)
H13	-0.0107	-0.3558	0.3861	0.027*
C14	-0.02900 (8)	-0.0927 (3)	0.33158 (10)	0.0249 (3)
H14	-0.0664	-0.1344	0.2952	0.030*
C15	-0.00799 (8)	0.1002 (2)	0.33070 (9)	0.0232 (3)
H15	-0.0314	0.1917	0.2947	0.028*
C16	0.04763 (8)	0.1581 (2)	0.38300 (9)	0.0201 (3)
H16	0.0624	0.2897	0.3821	0.024*
C17	0.09534 (8)	-0.3151 (2)	0.49745 (9)	0.0227 (3)
H17A	0.0692	-0.4366	0.4955	0.034*
H17B	0.0987	-0.2631	0.5540	0.034*
H17C	0.1410	-0.3409	0.4808	0.034*
C18	0.18647 (7)	0.6061 (2)	0.29468 (9)	0.0171 (3)
H18	0.1490	0.6274	0.3267	0.020*
C19	0.20239 (7)	0.7516 (2)	0.23404 (8)	0.0168 (3)
C20	0.25580 (7)	0.7241 (2)	0.18293 (9)	0.0178 (3)
C21	0.27077 (7)	0.8714 (2)	0.12674 (9)	0.0179 (3)
C22	0.23361 (8)	1.0427 (2)	0.12261 (9)	0.0193 (3)
H22	0.2443	1.1429	0.0853	0.023*
C23	0.18044 (8)	1.0686 (2)	0.17308 (9)	0.0203 (3)
H23	0.1549	1.1860	0.1694	0.024*
C24	0.16474 (7)	0.9262 (2)	0.22791 (9)	0.0190 (3)
H24	0.1284	0.9453	0.2618	0.023*
C25	0.33745 (8)	0.9728 (2)	0.01891 (10)	0.0223 (3)
H25A	0.2976	0.9870	-0.0209	0.034*
H25B	0.3762	0.9296	-0.0103	0.034*
H25C	0.3480	1.0985	0.0458	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01353 (19)	0.0233 (2)	0.01915 (19)	0.00182 (13)	0.00389 (13)	0.00516 (13)
S2	0.01378 (19)	0.02052 (19)	0.01875 (19)	0.00014 (13)	0.00349 (13)	0.00367 (13)
01	0.0240 (6)	0.0197 (5)	0.0281 (6)	0.0072 (4)	0.0118 (5)	0.0080 (5)
O2	0.0203 (5)	0.0228 (5)	0.0240 (5)	0.0052 (4)	0.0079 (4)	0.0076 (4)
N1	0.0168 (6)	0.0180 (6)	0.0184 (6)	-0.0019 (5)	0.0030 (5)	0.0006 (5)
N2	0.0157 (6)	0.0186 (6)	0.0179 (6)	-0.0006(5)	0.0030 (5)	0.0015 (5)
C1	0.0133 (7)	0.0191 (7)	0.0155 (6)	-0.0036 (5)	0.0018 (5)	-0.0015 (5)
C2	0.0162 (7)	0.0242 (8)	0.0257 (8)	0.0031 (6)	0.0036 (6)	0.0093 (6)
C3	0.0150 (7)	0.0232 (7)	0.0171 (7)	0.0017 (6)	0.0018 (5)	0.0063 (6)
C4	0.0190 (7)	0.0200 (7)	0.0149 (6)	0.0005 (6)	0.0020 (5)	0.0033 (5)
C5	0.0165 (7)	0.0234 (8)	0.0174 (7)	-0.0019 (6)	0.0016 (6)	0.0038 (6)
C6	0.0163 (7)	0.0281 (8)	0.0178 (7)	0.0037 (6)	0.0047 (6)	0.0039 (6)
C7	0.0246 (8)	0.0217 (7)	0.0182 (7)	0.0026 (6)	0.0034 (6)	-0.0007 (6)
C8	0.0193 (7)	0.0222 (7)	0.0210 (7)	-0.0030 (6)	-0.0002 (6)	0.0020 (6)
C9	0.0223 (8)	0.0225 (8)	0.0239 (7)	0.0012 (6)	0.0015 (6)	-0.0004 (6)
C10	0.0144 (7)	0.0224 (7)	0.0180 (7)	-0.0001 (6)	0.0057 (5)	-0.0016 (6)
C11	0.0137 (7)	0.0234 (7)	0.0178 (7)	0.0010 (6)	0.0069 (5)	-0.0021 (6)

C12	0.0173 (7)	0.0230 (7)	0.0175 (7)	0.0016 (6)	0.0077 (6)	-0.0006 (6)	
C13	0.0202 (8)	0.0249 (8)	0.0243 (8)	-0.0039 (6)	0.0076 (6)	-0.0024 (6)	
C14	0.0150 (7)	0.0377 (9)	0.0223 (7)	-0.0048 (7)	0.0032 (6)	-0.0017 (7)	
C15	0.0171 (7)	0.0309 (8)	0.0223 (7)	0.0046 (6)	0.0051 (6)	0.0053 (6)	
C16	0.0178 (7)	0.0208 (7)	0.0228 (7)	0.0008 (6)	0.0075 (6)	0.0007 (6)	
C17	0.0238 (8)	0.0217 (7)	0.0233 (7)	-0.0002 (6)	0.0054 (6)	0.0020 (6)	
C18	0.0131 (7)	0.0213 (7)	0.0168 (7)	-0.0009 (5)	0.0017 (5)	-0.0029 (6)	
C19	0.0152 (7)	0.0183 (7)	0.0164 (7)	-0.0007 (5)	-0.0004 (5)	-0.0020 (5)	
C20	0.0150 (7)	0.0178 (7)	0.0202 (7)	0.0022 (5)	0.0001 (5)	-0.0006 (6)	
C21	0.0156 (7)	0.0206 (7)	0.0174 (7)	0.0007 (6)	0.0004 (5)	-0.0004 (6)	
C22	0.0198 (7)	0.0190 (7)	0.0185 (7)	0.0007 (6)	-0.0012 (6)	0.0031 (6)	
C23	0.0198 (7)	0.0182 (7)	0.0224 (7)	0.0050 (6)	-0.0022 (6)	-0.0015 (6)	
C24	0.0148 (7)	0.0227 (8)	0.0192 (7)	0.0025 (6)	0.0010 (5)	-0.0037 (6)	
C25	0.0237 (8)	0.0219 (8)	0.0221 (7)	-0.0005 (6)	0.0056 (6)	0.0048 (6)	

Geometric parameters (Å, °)

S1—C1	1.7658 (14)	C10—H10B	0.9900
S1—C2	1.8317 (15)	C11—C16	1.396 (2)
S2—C1	1.7543 (14)	C11—C12	1.405 (2)
S2-C10	1.8271 (14)	C12—C13	1.397 (2)
O1—C20	1.3519 (18)	C12—C17	1.506 (2)
01—H10	0.835 (9)	C13—C14	1.387 (2)
O2—C21	1.3676 (18)	C13—H13	0.9500
O2—C25	1.4279 (18)	C14—C15	1.387 (2)
N1—C1	1.2919 (19)	C14—H14	0.9500
N1—N2	1.4037 (17)	C15—C16	1.388 (2)
N2-C18	1.2892 (19)	C15—H15	0.9500
C2—C3	1.513 (2)	C16—H16	0.9500
C2—H2A	0.9900	C17—H17A	0.9800
C2—H2B	0.9900	C17—H17B	0.9800
С3—С8	1.390 (2)	C17—H17C	0.9800
C3—C4	1.409 (2)	C18—C19	1.453 (2)
C4—C5	1.397 (2)	C18—H18	0.9500
C4—C9	1.504 (2)	C19—C20	1.409 (2)
C5—C6	1.387 (2)	C19—C24	1.409 (2)
С5—Н5	0.9500	C20—C21	1.408 (2)
С6—С7	1.387 (2)	C21—C22	1.385 (2)
С6—Н6	0.9500	C22—C23	1.397 (2)
С7—С8	1.394 (2)	C22—H22	0.9500
С7—Н7	0.9500	C23—C24	1.373 (2)
С8—Н8	0.9500	C23—H23	0.9500
С9—Н9А	0.9800	C24—H24	0.9500
С9—Н9В	0.9800	C25—H25A	0.9800
С9—Н9С	0.9800	C25—H25B	0.9800
C10-C11	1.509 (2)	C25—H25C	0.9800
C10—H10A	0.9900		

C1—S1—C2	102.68 (7)	C13—C12—C11	118.25 (14)
C1—S2—C10	102.44 (7)	C13—C12—C17	120.22 (14)
C20—O1—H1O	105.9 (14)	C11—C12—C17	121.53 (14)
C21—O2—C25	116.65 (11)	C14—C13—C12	121.52 (15)
C1—N1—N2	112.11 (12)	C14—C13—H13	119.2
C18—N2—N1	113.74 (12)	C12—C13—H13	119.2
N1—C1—S2	120.28 (11)	C13—C14—C15	120.04 (14)
N1—C1—S1	122.83 (11)	C13—C14—H14	120.0
<u>\$2-C1-</u> <u>\$1</u>	116.88 (8)	C15—C14—H14	120.0
C3—C2—S1	110.74 (10)	C14—C15—C16	119.30 (14)
C3—C2—H2A	109.5	C14—C15—H15	120.3
S1—C2—H2A	109.5	C16—C15—H15	120.3
C3—C2—H2B	109.5	C15—C16—C11	121.05 (14)
S1—C2—H2B	109.5	C15—C16—H16	119.5
H2A—C2—H2B	108.1	C11—C16—H16	119.5
C8-C3-C4	119 77 (13)	C12—C17—H17A	109 5
C8-C3-C2	118 61 (13)	C12—C17—H17B	109.5
C4-C3-C2	121 50 (14)	H17A—C17—H17B	109.5
$C_{5} - C_{4} - C_{3}$	118 28 (14)	C12 - C17 - H17C	109.5
$C_{5} - C_{4} - C_{9}$	119.68 (13)	H17A - C17 - H17C	109.5
$C_3 - C_4 - C_9$	122 04 (13)	H17B $C17$ $H17C$	109.5
C6-C5-C4	122.01(13) 121.39(14)	N_{2} C_{18} C_{19}	121 81 (13)
C6-C5-H5	119.3	N2-C18-H18	119.1
C4-C5-H5	119.3	C19 - C18 - H18	119.1
C_{7} C_{6} C_{5}	120 27 (14)	$C_{10} - C_{10} - C_{24}$	119.1
C7—C6—H6	110.0	$C_{20} - C_{19} - C_{24}$	117.42(13) 121.40(13)
C5-C6-H6	119.9	$C_{20} = C_{10} = C_{18}$	121.40(13)
C_{6} C_{7} C_{8}	119.9 110.00(14)	01 C20 C21	117.10(13) 117.85(13)
C6-C7-H7	120.5	$01 - C_{20} - C_{19}$	122 66 (13)
C_{0} C_{7} H_{7}	120.5	$C_{20} = C_{10} = C_{10}$	122.00(13)
C_{3} C_{8} C_{7}	120.3 121.26(14)	0^{2} 0^{2} 0^{2} 0^{2} 0^{2}	119.49(13) 124.72(13)
$C_3 = C_8 = C_7$	121.20 (14)	02 - 021 - 022	124.72(13) 115.23(13)
C_{2}	119.4	$C_{2}^{2} = C_{2}^{21} = C_{2}^{20}$	113.23(13) 120.03(13)
$C_{1} = C_{0} = H_{0}$	100.5	$C_{22} = C_{21} = C_{20}$	120.03(13)
$C_4 = C_9 = H_0 R$	109.5	$C_{21} = C_{22} = C_{23}$	120.19 (14)
	109.5	$C_{21} = C_{22} = H_{22}$	119.9
$H_{A} = C_{A} = H_{A} = H_{A}$	109.5	$C_{23} = C_{22} = H_{22}$	119.9
	109.5	$C_{24} = C_{23} = C_{22}$	120.08 (14)
HOR CO HOC	109.5	$C_{24} = C_{23} = H_{23}$	119.7
$\begin{array}{cccc} n_{9}B - C_{9} - n_{9}C \\ C_{11} - C_{10} - S_{2} \\ \end{array}$	109.5	$C_{22} = C_{23} = H_{23}$	119.7
$C_{11} = C_{10} = S_2$	114.31 (10)	$C_{23} = C_{24} = C_{19}$	120.18 (15)
C11 - C10 - H10A	108.0	$C_{23} = C_{24} = H_{24}$	119.9
S2—CI0—HI0A	108.0	C19 - C24 - H24	119.9
CII - CIU - HIUB	100.0	02 - 025 - H25P	109.5
S2-CIU-HIUB	108.0	$U_2 - U_2 - H_2 B$	109.5
H10A - C10 - H10B	10/.0	$H_{2}^{2}A - U_{2}^{2} - H_{2}^{2}B$	109.5
C16—C11—C12	119.83 (14)	U2-C25-H25C	109.5
C16—C11—C10	118.98 (14)	H25A—C25—H25C	109.5
C12—C11—C10	121.18 (13)	H25B—C25—H25C	109.5

C1—N1—N2—C18	-170.55 (13)	C10-C11-C12-C17	-0.1 (2)
N2—N1—C1—S2	179.01 (10)	C11—C12—C13—C14	-0.3 (2)
N2—N1—C1—S1	0.46 (17)	C17—C12—C13—C14	179.51 (14)
C10—S2—C1—N1	2.58 (13)	C12-C13-C14-C15	-0.8 (2)
C10—S2—C1—S1	-178.79 (8)	C13—C14—C15—C16	1.3 (2)
C2—S1—C1—N1	169.89 (12)	C14—C15—C16—C11	-0.7 (2)
C2—S1—C1—S2	-8.71 (10)	C12-C11-C16-C15	-0.4 (2)
C1—S1—C2—C3	-176.06 (11)	C10-C11-C16-C15	-179.26 (13)
S1—C2—C3—C8	-109.37 (14)	N1-N2-C18-C19	179.27 (12)
S1—C2—C3—C4	74.54 (16)	N2-C18-C19-C20	2.3 (2)
C8—C3—C4—C5	-1.1 (2)	N2-C18-C19-C24	-175.95 (13)
C2—C3—C4—C5	174.96 (13)	C24—C19—C20—O1	179.65 (13)
C8—C3—C4—C9	178.52 (13)	C18—C19—C20—O1	1.4 (2)
C2—C3—C4—C9	-5.4 (2)	C24—C19—C20—C21	0.1 (2)
C3—C4—C5—C6	-0.5 (2)	C18-C19-C20-C21	-178.11 (13)
C9—C4—C5—C6	179.90 (13)	C25—O2—C21—C22	-5.1 (2)
C4—C5—C6—C7	1.1 (2)	C25—O2—C21—C20	176.10 (13)
C5—C6—C7—C8	-0.1 (2)	O1—C20—C21—O2	0.0 (2)
C4—C3—C8—C7	2.1 (2)	C19—C20—C21—O2	179.55 (12)
C2—C3—C8—C7	-174.06 (13)	O1—C20—C21—C22	-178.84 (13)
C6—C7—C8—C3	-1.5 (2)	C19—C20—C21—C22	0.7 (2)
C1—S2—C10—C11	82.27 (12)	O2—C21—C22—C23	-179.84 (14)
S2-C10-C11-C16	-106.83 (14)	C20-C21-C22-C23	-1.1 (2)
S2-C10-C11-C12	74.37 (15)	C21—C22—C23—C24	0.7 (2)
C16—C11—C12—C13	0.9 (2)	C22—C23—C24—C19	0.2 (2)
C10-C11-C12-C13	179.73 (13)	C20—C19—C24—C23	-0.6 (2)
C16—C11—C12—C17	-178.88 (13)	C18—C19—C24—C23	177.71 (13)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>O</i> …N2	0.84 (2)	1.87 (2)	2.6331 (16)	151 (2)
C5—H5···O2 ⁱ	0.95	2.44	3.3868 (18)	176
$C7$ — $H7$ ··· $Cg1^i$	0.95	2.68	3.5046 (15)	146
C9—H9 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱ	0.98	2.72	3.5482 (17)	142

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*, -*z*+1.