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Abstract 

One–pot and efficient method for the synthesis of progesteronpyridine 5a-c, 6a-c and 7a,b and/or progesteronpyran 

derivatives 9a-c and 10a,b by condensation reaction of progesterone 1 with different aldehydes and active methylene 

compounds in the presence of ammonium acetate or piperidine.  New progesteronopyrimidine derivatives 12a-d and 

13a, b were synthesized via interaction of progesterone 1 with urea or thiourea and/or guanidine reagents and 

aldehyde. Progesterone 1 was examined to synthesize heterocyclic compound 16 containing γ-Lactone chiral carbon 

via the reaction of hydrazone derivative 14 with phenyl isothiocyanate followed by boiling with chloroacetic acid in 

benzene. The biological activity of compounds 5a, 5b, 6b, 7a, 9b, 9c, 12a, 12c, and 13a were evaluated as growth 

inhibitors of the liver and the breast carcinoma human cell line (HEPG2 & MCF7). Compounds 13a, 12a and 7a 

showed a higher potency than the standard.    

Key Words: Progesterone, MCR’s (multicomponents reaction), (pyridine, pyran, pyrimidine, γ-Lactone) derivatives, 

HEPG2 & MCF7. 

1. Introduction: 

      Progesterone is a female sex hormone that plays an important physiological role to regularize and rebuild the 

changes caused to the body by estrogen in the luteal phase of the menstrual cycle.
1 
Progestrone is a steroid hormone 

consists chemically of four fused hydrocarbons containing the functional groups of ketone, acetyl and two methyl 

groups. It is a precursor of all steroid hormones and an intermediate in the biosynthesis of androgens, estrogens and 

the corticoid.
2 

Synthetic compounds with progesterone are used in the prevention of miscarriage, treatment of 

menstrual disorders and development in the cosistuent of some contraceptives.
3
 Progesterone like pregnenlone and 

dehydroepi androsterone, belongs to the group of neurosteroids that are found in high concentrations in certain areas 

in the brain and are synthesized there. Neurosteroids affect synaptic functioning is neuroprotective and also affect 

myelinisation. They are being investigated for their potential to improve memory and cognitive ability.
4, 5  

Progesterone plays an important role in other systems. For example it raises epidermal growth factor-1 levels
 6

 

reduces spasm and increases core temperature during ovulation.
7
  In addition, it relaxes smooth muscles, acts as an 

anti-inflammatory agent
8
 and regulates the immune response, normalizes blood clotting and vascular tone.

 9
 

Moreover it assists the thyroid function in bone building and prevents endometrial cancer by regulating the effects of 

estrogen.
10 

On the other hand; pyridine and pyrimidine nucleuses are prevalent in numerous natural products and are 

extremely important in chemistry of biologically systems.
 11, 12

 They play a key role catalyzing both biological and 

chemical systems. In many enzymes of living organisms, it is the prosthetic pyridine nucleotide that is involved in 

various oxidation-reduction processes. The pyridine ring exists also in the important vitamins niacin and pyridoxine 

(vitamin B6) and in the highly toxic alkaloids such as nicotine.
13-15  

Moreover, substituted pyridines are reported as 

leukotriene B-4 antagonists.
 16, 17

 The literature survey have also revealed the important of pyran nucleus as a 
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privileged structure because many of its derivative possess useful pharmacological 
18, 19

 and anticancer activities
. 20,21

 

Poly functionalized pyrans and their derivatives have been the subject of significant interest from the synthetic 

community and have been widely recognized as versatile scaffolds with diverse biological activity
. 22,23 

Upon all the 

previous information and in continuation of our previous work for synthesis of different bioactive fused heterocyclic 

derivatives using MCR’s as useful tool for synthesis.
 24, 25

 This report explains the building of poly functionally 

heterocyclic rings over progesterone skeleton to improve its physiological activity. Examination the activity of some 

newly synthesized products as antitumor agents have been carried out.  

Experimental:  

Progesterone was purchased from Sigma Company, USA. The appropriate precautions in handling moisture sensitive 

compounds were under taken. Melting points were determined on an electro thermal apparatus (Buchi 535, 

Switzerland) in an open capillary tube and are uncorrected. IR spectra expressed in cm
–1

 were recorded in KBr 

pellets on a PA-9721 IR spectrophotometer. 
1
H and 

13
C-NMR spectra were recorded in [D6] DMSO as solvent on a 

Jeol 270&/or 500 MHz spectrometer and the chemical shifts were recorded in δ values (ppm) relative to TMS as 

internal reference. Mass spectra were recorded on Kratos (75 eV) Ms equipment. Elemental analysis was carried out 

by the micro-analytical unit at the National Research Centre, Giza, Egypt. All reactions were monitored by thin layer 

chromatography, carried out on 0.2 mm silica gel 60 F-254 (Merck) plates using UV light (245 and 365 nm) for 

detection.   

General Procedure:  

Synthesis of 5a-c, 6a-c and 7a,b 

      To a solution of progesterone 1 (0.134 g, 0.001 mol), added aldehyde (0.001 mol), and malononitrile (0.066 g, 

0.001 mol) or ω-cyano-acetophenone (0.113g, 0.001 mol) and/or ethyl cyanoacetate (0.130g, 0.001 mol)  in (30 ml) 

ethanol containing ammonium acetate (0.980g, 2% excess). The reaction mixture was heated under reflux for 3-5 h., 

until all starting materials had disappeared indicated by TLC. The solvent was evaporated under reduced pressure 

and the remaining solids were crystallized from the proper solvent. 

2-Amino-6-(3-oxo-androst-4-ene-17-yl)-4-phenyl-nicotinonitrile 5a 

Yellow crystals from benzene. Yield (86%), mp. 90 ºC. Ms (EI) m/z, (%): 465 [M
+
, 80.2%],; IR (KBr, cm

-1
): 3329 

(NH2); 3126 (C-H, aromatic); 2862 (CH3); 2217 (CN); 1696 (C=O); 1640 (C=C); 1603 (C=N). 
1
H-NMR (500 MHz, 

DMSO-d6, TMS): δ 0.81 (s, 3H, CH3-19); 1.13 (s, 3H, -CH3-18); 5.63 (s, 1H, CH-4 of progesterone); 6.61 (s, 2H, 

NH2, D2O exchangeable); 7.17-7.94 (m, 6H, 5 aromatic protons+1H pyridine ring). 
13

C-NMR (125 MHz, DMSO-d6, 

TMS): δ 19.6 (C-18), 20.0 (C-19), 20.8 (C-15), 20.9 (C-11), 25.8 (C-16), 28.7 (C-8), 30.4 (C-1), 30.8 (C-6), 30.9 (C-

7), 31.1 (C-12), 38.5 (C-2), 38.5 (C-10), 40.0 (C-13), 43.2 (C-9), 46.7 (C-14), 47.2 (C-17), 118.0 (CN), 119.3 (C-4), 

126.7, 129.1, 138.1 (C-phenyl), 91.7, 110.5, 155.2, 164.3 ,166.1(C-pyridine ring), 162.6 (C-5) ,197.6 (C-3). Anal. 

Calcd. For C31H35N3O: C, 79.71%; H, 7.58%; N, 9.02%; Found: C, 79.40%; H, 7.50%; N, 9.00%. 

2-Amino-4-(4-chloro-phenyl)-6-(3-oxo-androstene-4-ene-17-yl)-nicotinonitrile 5b 

Pale yellow crystals from EtOH. Yield (82%), mp. 120 ºC. Ms (EI) m/z, (%): 501[M
+2

, 5.6%]; 499[M
+
,16.3%]; 

362[M+-(Ar+CN),65.4%] ; IR (KBr, cm-1): 3305 (NH2); 3126 (C-H, aromatic); 2962 (CH3); 2216 (CN); 1700 (C=O); 

1645 (C=C); 1602 (C=N). 
1
H-NMR (270 MHz, DMSO-d6, TMS): δ 0.88 (s, 3H, CH3-19); 1.14(s, 3H, -CH3-18); 5.58 

(s, 1H, CH-4, of progesterone); 6.81(s, 2H, NH2 ,D2O exchangeable); 7.15(s,1H,pyridine proton); 7.30 (dd,2H, 

aromatic protons JHH =8Hz);7.44 (dd,2H,  aromatic protons JHH =8Hz). 
13

C-NMR (125 MHz, DMSO-d6, TMS): δ 

19.3 (C-18), 20.1 (C-19), 20.8 (C-15), 20.9 (C-11), 25.6 (C-16), 28.3 (C-8), 30.2 (C-1), 29.9 (C-7), 30.8 (C-6), 31.1 

(C-12), 38.0 (C-2), 38.1 (C-10), 39.1 (C-13), 42.5 (C-9), 47.7 (C-17), 47.4 (C-14), 118.0 (CN), 119.8 (C-4), 128.1, 

129.3, 134.5, 136.4 (C- aromatic), 91.7, 111.2, 155.8, 164.3, 166.4 (C-pyridine ring), 160.6 (C-5) ,198.4 (C-3). Anal. 

Calcd. For C31H34ClN3O: C, 74.50%;  H, 6.85%;  N, 8.40%; Cl, 7.09%. Found: C, 74.20%; H, 6.71%; N, 8.35%, Cl, 

7.00%. 
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2-Amino-4-(2, 5-dimethoxy-phenyl)-6-(3-oxo-androst-4-ene-17-yl)-nicotinonitrile 5c 

Yellow crystals from EtOH. Yield (73%), mp. 110 ºC. Ms (EI) m/z,( %): 525 [M
+
, 30.2%]; IR (KBr, cm

-1
): 3315 

(NH2); 3126 (C-H, aromatic); 2845 (CH3); 2212 (CN); 1700 (C=O); 1644 (C=C); 1604 (C=N). 
1
H-NMR (270 MHz, 

DMSO-d6, TMS): δ 0.78 (s, 3H, CH3-19); 1.13 (s, 3H, CH3-18); 3.64 (s, 3H, OCH3); 3.71 (s, 3H, OCH3), 5.65 (s, 

1H, CH-4 of progesterone); 6.52 (s, 2H, NH2, D2O exchangeable);  6.63(d,1H,aromatic proton); 6.71(d, 1H, aromatic 

proton); 6.73(s, 1H, aromatic proton); 7.41(s,1H, pyridine proton). Anal. Calcd. For C33H39N3O3: C, 75.40%; H, 

7.51%; N, 8.00%; Found: C, 75.20%; H, 7.32%; N, 7.95%. 

6-(3-oxo-androst-4-ene-17-yl)-2, 4-diphenyl-nicotinonitrile 6a  

Yellow crystals from EtOH. Yield (71%), mp. 145 ºC. Ms (EI) m/z, (%): 526 [M
+
, 89.7%]; IR (cm

-1
): 3126 (C-H, 

aromatic); 2862 (CH3); 2220 (CN); 1699 (C=O); 1640 (C=C); 1606 (C=N). 
1
H-NMR (270 MHz, DMSO-d6, TMS): δ 

0.97 (s, 3H, CH3-19); 1.14 (s, 3H, CH3-18); 5.63 (s, 1H, CH-4 of progesterone); 7.26-7.97 (m, 11H, 5H phenyl+5H 

phenyl+1H pyridine proton). 13C-NMR (125 MHz, DMSO-d6, TMS): δ 19.7 (C-18), 20.5 (C-19), 20.8 (C-15), 20.9 

(C-11), 25.1 (C-16), 29.7 (C-8), 30.4 (C-1), 30.9 (C-7), 32.6(C-6), 34.5 (C-12), 37.9 (C-2), 39.1 (C-10), 42.5 (C-13), 

42.9 (C-9), 45.7 (C-14), 47.1 (C-17), 118.9 (CN), 119.1 (C-4), 127.1,127.6, 129.1,129.5, 136.0, 137.4 (C-phenyl), 

105.8, 106.4, 154.8, 163.3, 167.7 (C-pyridine ring), 162.6 (C-5), 197.6 (C-3) . Anal. Calcd. For C37H38N2O: C, 

84.4%; H, 7.30%; N, 5.30%; Found: C, 84.30 %; H, 7.22%; N, 5.12%. 

4-(4-Chloro-phenyl)-6-(3-oxo-androst-4-ene-17-yl)-2-phenyl-nicotinonitrile 6b 

Orange crystals from EtOH. Yield (83%), mp. 105 ºC. Ms (EI) m/z, (%): 562[M
+2

, 8.2%]; 560[M
+
,24.6%]; 424[M

+
-

(Ar+CN), 54.5%]; IR (cm
-1

): 3126 (C-H, aromatic); 2862 (CH3); 2210 (CN); 1695 (C=O); 1640 (C=C); 1614 (C=N). 
1
H-NMR (270 MHz, DMSO-d6, TMS): δ 0.97 (s, 3H, CH3-19); 1.14 (s, 3H, CH3-18); 5.63 (s, 1H, CH-4 of 

progesterone); 7.32-8.06 (m, 10H, 5Hphenyl+4H aromatic +1H pyridine proton). 
13

C-NMR (125 MHz, DMSO-d6, 

TMS): δ 19.3 (C-18), 20.0 (C-19), 20.8 (C-15), 20.9 (C-11), 25.8 (C-16), 29.7 (C-8), 30.4 (C-1), 30.9 (C-7), 32.8 (C-

6), 34.2 (C-12), 38.5 (C-2), 39.0 (C-10), 42.8 (C-13), 42.9 (C-9), 45.7 (C-14), 47.3 (C-17), 118.0 (CN), 119.8 (C-4), 

127.4, 127.6, 129.4, 136.2 (C-aromatic),128.8, 129.3, 134.8, 136.1 (C- phenyl), 105.9, 106.2, 154.5, 163.6, 167.4 (C-

pyridine ring) , 162.6 (C-5), 197.6 (C-3). Anal. Calcd. For C37H37ClN2O: C, 79.20%; H, 6.65%; N, 4.99%; Cl, 6.32. 

Found: C, 79.12%; H, 6.62%; N, 4.85%; Cl, 6.28%. 

4-(2, 5-Dimethoxyphenyl)-6-(3-oxo-androst-4-ene-17-yl)-2-phenyl-nicotinonitrile 6c 

Orange crystals from EtOH . Yield (68%), mp. 95 ºC. Ms (EI) m/z,( %): 586 [M
+
, 40.0%]; IR (cm

-1
): 3126 (C-H, 

aromatic); 2862 (CH3); 2210 (CN); 1699 (C=O); 1641 (C=C); 1610 (C=N). 
1
H-NMR (270 MHz, DMSO-d6, TMS): δ 

0.71 (s, 3H, CH3-19); 1.09 (s, 3H, CH3-18); 3.62(s, 3H, OCH3); 3.69 (s, 3H, OCH3), 5.31 (s, 1H, CH-4 of 

progesterone); 6.42(d,1H, aromatic proton); 6.60(d,1H, aromatic proton); 6.81 (s,1H, aromatic proton); 7.25-7.99 (m, 

6H, 5H phenyl+1H pyridine proton).  Anal. Calcd. For C39H42N2O3: C, 79.80%; H, 7.21%; N, 4.77%; Found: C, 

79.72%; H, 7.12%; N, 4.65%.  

4- phenyl-6-(3-Oxo-androst-4-ene-17-yl)-2-oxo-1,2-dihydro-pyridine-3-carbonitrile 7a 

Yellow crystals from EtOH. Yield (81%), mp. 132 ºC. Ms (EI)m/z, (%): 466 [M
+
, 37.1%]; IR (KBr, cm

-1
): 3150 

(NH), 3026 (C-H, aromatic); 2860 (CH3); 2219 (CN); 1700 (C=O); 1689 (C=O), 1646 (C=C). 1H-NMR (500 MHz, 

DMSO-d6, TMS): δ 0.88 (s, 3H, CH3-19); 1.18 (s, 3H, CH3-18); 5.21 (s, 1H, CH-4 of progesterone)  5.70(s,1H, 

pyridine proton); 7.10-7.43 (m, 5H, 5 aromatic protons); 8.10 (s,1H,NH , D2O exchangeable).
 13

C-NMR (125 MHz, 

DMSO-d6, TMS): δ 18.4 (C-16); 20.0(C-18); 20.5(C-19); 20.9(C-11); 21.0 (C-15); 28.8 (C-1); 29.1(C-8); 30.6 (C-7); 

31.4 (C-12); 32.5 (C-6); 37.5 (C-13); 38.2 (C-2); 39.0 (C-10); 42.2 (C-9); 46.0 (C-14); 50.2 (C-17); 95.5, 102.2, 

141.4, 162.7,169.2 (C- pyridine); 117.2 (CN); 119.8 (C-4); 126.5, 127.1, 128.9, 134.7 (C-phenyl); 162.3 (C-5); 197.5 

(C-3). Anal. Calcd. For C31H34N2O2: C, 79.80%; H, 7.34%; N, 6.00%; Found: C, 79.73%; H, 7.22%; N, 5.93%. 

4-(2,5-Dimethoxyphenyl)-6-(3-oxo-androst-4-ene-17-yl)-2-oxo-1,2-dihydro-pyridine-3-carbonitrile 7b 
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Yellow crystals from EtOH. Yield (77%), mp. 160 ºC. Ms (EI)m/z,( %): 526 [M
+
, 62.4%]; IR (KBr, cm

-1
): 3152 

(NH), 3026 (C-H, aromatic); 2862 (CH3); 2219 (CN); 1699 (C=O); 1680 (C=O), 1641 (C=C). 
1
H-NMR (500 MHz, 

DMSO-d6, TMS): δ 0.88 (s, 3H, CH3-19); 1.16(s, 3H, CH3-18); 3.73 (s, 3H, OCH3); 3.96 (s, 3H, OCH3), 5.21 (s, 1H, 

CH-4 of progesterone );  5.91(s, 1H, pyridine proton); 6.83-7.10 (m, 3H, 3 aromatic protons); 8.16(s, 1H, NH ,D2O 

exchangeable). Anal. Calcd. For C33H38N2O4: C, 75.26%; H, 7.27%; N, 5.32%; Found: C, 75.17%; H, 7.12%; N, 

5.17%. 

General procedure: for synthesis 9a-c and 10a, b 

      To a solution of progesterone 1 (0.314 g, 0.001 mol), in 30ml ethanol added aldehyde (0.001 mol) and 

malononitrile (0.066 g, 0.001 mol) or ω-cyanoacetophenone (0.113 g, 0.001 mol) with a few drops of piperidine. The 

mixture was refluxed for 3-7 h., until all starting materials had disappeared as indicated by TLC. The solvent was 

evaporated and the obtained solids crystallized from the proper solvent. 

2-Amino-6-(3-oxo-androst-4-ene-17-yl)-4-phenyl-4H-pyran-3-carbonitrile 9a 

Buff crystals from EtOH . Yield (81%), mp. 106 ºC. Ms (EI) m/z,( %): 468 [M
+
, 83.2%]; IR (KBr, cm

-1
): 3342 

(NH2), 3026 (C-H, aromatic); 2962 (CH3); 2219 (CN); 1698 (C=O); 1640 (C=C), 1222 (O-C). 
1
H-NMR (270 MHz, 

DMSO-d6, TMS): δ 0.87 (s, 3H, CH3-19); 1.18 (s, 3H, CH3-18); 3.91(s,1H,CH-4 of pyran proton ); 4.42 (s,1H, CH-5 

of pyran proton); 5.72 (s, 1H, CH-4 of progesterone); 6.82 (s, 2H, NH2, ,D2O exchangeable), 7.14-7.55 (m, 5H, 5 

aromatic protons). 
13

C-NMR (125 MHz, DMSO-d6, TMS): δ 17.9 (C-16), 20.4 (C-18), 20.5 (C-19), 21.4 (C-15), 21.1 

(C-11), 28.4 (C-1), 29.8 (C-8), 30.7 (C-7), 32.9 (C-6), 31.6 (C-12), 38.9 (C-2), 37.0 (C-13), 39.2 (C-10),  42.9 (C-9), 

46.5 (C-14), 49.8 (C-17), 117.6 (CN), 119.7 (C-4), 125.6, 127.9, 128.4, 142.4 (C-phenyl), 29.4, 58.1, 119.9, 158.4, 

159.9 (C- pyran ring), 161.2 (C-5), 196.6 (C-3). Anal. Calcd. For C31H36N2O2: C, 79.50%; H, 7.70%; N, 5.90%; 

Found: C, 79.42%; H, 7.62%; N, 5.81%. 

2-Amino-4-(4-chloro-phenyl)-6-(3-oxo-androst-4-ene-17-yl)-4H-pyran-3-carbonitrile 9b 

Orange crystals from EtOH . Yield (73%), mp. 110 ºC. Ms (EI) m/z, (%): 504[M
+2

, 12.3%]; 502[M
+
,37.1%]; IR 

(KBr, cm-1): 3347 (NH2), 3026 (C-H, aromatic); 2872 (CH3); 2212 (CN); 1699 (C=O); 1640 (C=C), 1232 (O-C). 1H-

NMR (270 MHz, DMSO-d6, TMS): δ 0.88 (s, 3H, CH3-19); 1.11 (s, 3H, -CH3-18); 4.01(s, 1H, CH-4 of pyran 

proton); 4.49 (s,1H,CH-5 of pyran proton); 5.70 (s, 1H, CH-4 of progesterone); 6.61 (s, 2H, NH2 ,D2O 

exchangeable); 6.90 (dd, 2H, aromatic protons); 7.03 (dd, 2H, aromatic protons). 
13

C-NMR (125 MHz, DMSO-d6, 

TMS): δ16.1 (C-16),  20.2 (C-18), 20.6 (C-19), 21.9 (C-15), 22.1 (C-11), 28.4 (C-1), 29.8 (C-8), 30.4 (C-7), 32.2 (C-

6), 31.9 (C-12), 38.9 (C-2), 37.1 (C-13),  39.7 (C-10), 42.9 (C-9), 46.5 (C-14), 49.6 (C-17), 117.0 (CN), 119.8 (C-4), 

128.6, 130.4, 131.9, 140.7 (C-aromatic), 29.4, 58.0, 119.9, 158.7, 159.2 (C- pyran ring), 160.9 (C-5), 197.2 (C-3),  

Anal. Calcd. For C31H35ClN2O2: C, 74.00%; H, 7.00%; N, 5.60%; Cl, 7.05%. Found: C, 73.95%; H, 6.92%; N, 

5.49%; Cl, 7.01 %. 

2-Amino-4-(2,5-dimethoxyphenyl)-6-(3-oxo-androst-4-ene-17-yl)-4H-pyran-3-carbonitrile 9c 

Yellow crystals from Benzene . Yield (68%), mp. 78 ºC. Ms (EI) m/z, (%): 528 [M
+
, 65.0%]; IR (cm

-1
): 3340 (NH2), 

3016 (C-H, aromatic); 2870 (CH3); 2210 (CN); 1698 (C=O); 1645 (C=C), 1225 (O-C). 
1
H-NMR (270 MHz, DMSO-

d6, TMS): δ 0.78 (s, 3H, CH3-19); 1.14 (s, 3H, CH3-18); 3.76 (s, 6H, 2OCH3); 3.89 (s,1H, CH4-pyran proton); 4.41 

(s,1H, CH5-pyran proton); 5.65 (s, 1H, CH-4 of progesterone); 6.62 (s, 2H, NH2 ,D2O exchangeable); 6.77-7.05 (m, 

3H, 3 aromatic protons). Anal. Calcd. For C33H40N2O4: C, 74.91%; H, 7.60%; N, 5.30%; Found: C, 74.82%; H, 

7.52%; N, 5.22%. 

4-(4-chloro-phenyl)-6-(3-oxo-androst-4-ene-17-yl)-2-phenyl-4H-pyran-3-carbonitrile 10a 

Yellow crystals from EtOH. Yield (69%), mp. 144 ºC. Ms (EI) m/z, (%):565[M
+2

, 3.6%]; 563[M
+
,10.5%]; IR (KBr, 

cm
-1

): 3016 (C-H, aromatic); 2950 (CH3); 2221 (CN); 1700 (C=O); 1641 (C=C), 1214 (O-C). 
1
H-NMR (270 MHz, 

DMSO-d6, TMS): δ 0.84 (s, 3H, Me-19); 1.08 (s, 3H, -CH3-18); 3.87(s,1H,CH-4 of pyran proton); 4.34( s, 1H, CH-5 
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of pyran proton );  5.60 (s, 1H, CH-4 of progesterone); 7.12-7.21 (m, 4H, 4 aromatic protons); 7.38-7.49(m, 5H, 

phenyl protons).  Anal. Calcd. For C37H38ClNO2: C, 78.80%; H, 6.80%; N, 2.50%; Cl, 6.28%. Found: C, 78.72%; H, 

6.75%; N, 2.43%; Cl, 6.12%. 

4-(2, 5-Dimethoxyphenyl)-6-(3-oxo-androst-4-ene-17-yl)-2-phenyl-4H-pyran-3-carbonitrile 10b 

Brown crystals from Benzene. Yield (62%), mp. 70 ºC. Ms (EI) m/z, (%): 589 [M
+
, 88.2%]; IR (KBr, cm

-1
): 3080 

(C-H, aromatic); 2850 (CH3); 2223 (CN); 1700 (C=O); 1651 (C=C), 1222 (O-C). 
1
H-NMR (270 MHz, DMSO-d6, 

TMS): δ 0.80 (s, 3H, CH3-19); 1.08 (s, 3H, -CH3-18); 3.77(s, 6H, OCH3); 3.89 (s, 1H, CH4-pyran proton); 4.21 

(s,1H, CH5-pyran proton); 5.62 (s, 1H, CH-4 of progesterone); 6.82-6.91 (m, 3H, 3 aromatic protons); 7.14-

7.40(m,5H, 5phenyl protons).  Anal. Calcd. For C39H43NO4: C, 79.40%; H, 7.40%; N, 2.40%; Found: C, 79.32%; H, 

7.35%; N, 2.33%. 

General procedure: Synthesis of progesterone pyrimidine derivatives of 12a-d and 13a,b 

      To a suspension of progesterone 1 (0.314g, 0.001mmol) in freshly prepared Sodium ethoxide, in absolute ethanol 

the aldehyde (0.001mmol), urea, thiourea and guanidine (0.001mmol) were added. The reaction mixture was heated 

under reflux for 3-5 h., until the starting materials had disappeared as indicated by TLC, and then poured into ice-

water. The solid product so formed dried and crystallized from the appropriate solvent.  

6-(4-Chloro-phenyl)-4-(3-oxo-androst-4-ene-17yl)-1H-pyrimidin-2-one 12a 

Yellow crystals from Benzene. Yield (82%), m.p. 80 ºC. Ms (m/z, %): 478[M
+2

, 8.4%]; 476[M
+
,25.0%]; 365[M

+
-P-

ClC6H4, 45.3%]; IR (KBr, cm
-1

): 3158 (NH), 3090 (C-H, aromatic); 2933 (CH3); 1700 (C=O); 1659 (C=O); 1609 

(C=N). 
1
H-NMR (500 MHz, DMSO-d6, TMS): δ 0.90 (s, 3H, CH3-19); 1.12 (s, 3H, -CH3-18); 5.61 (s, 1H, CH-4 of 

progesterone), 6.97(s, 1H, pyrimidine ring); 7.25 (d, 2H, aromatic protons); 7.36 (d, 2H, aromatic protons); 7.91(s, 

1H, NH, D2O exchangeable). 
13

C-NMR (125 MHz, DMSO-d6, TMS): δ 17.3 (C-16), 20.1 (C-11),  20.9 (C-18), 21.1 

(C-19), 21.4 (C-15), 29.7 (C-8), 28.4 (C-1), 30.2 (C-7), 31.4 (C-12),  32.5 (C-6), 38.9 (C-2), 39.1(C-10), 35.9 (C-13), 

42.3 (C-9), 43.4 (C-17), 46.4 (C-14), 120.1 (C-4), 127.6, 128.8, 130.1, 133.0 (C-aromatic), 87.9, 144.2, 159.8 ,164.5 

(C-pyrimidine ring), 161.9 (C-5), 197.1 (C-3). Anal. Calcd. For C29H33ClN2O2: C, 73.02%; H, 6.97%; N, 5.87%; Cl, 

7.43%. Found: C, 72.81%; H, 6.12%; N, 5.31%; Cl, 7.23%. 

4-(3-oxo-androst-4-ene-17yl)-6-furan-2-yl-1H-pyrimidin-2-one 12b 

Yellow crystals from MeOH.  Yield (77%), m.p. 170 ºC. Ms (m/z, %): 432 [M
+
, 40.0%]; IR (KBr, cm

-1
): 3150 (NH), 

3054 (C-H, aromatic); 2925 (CH3); 1700 (C=O); 1673 (C=O); 1609(C=N). 
1
H-NMR (500 MHz, DMSO-d6, TMS): δ 

0.89 (s, 3H, CH3-19); 1.08 (s, 3H, -CH3-18); 5.59 (s, 1H, CH-4 of progesterone), 6.53 (s, 1H, pyrimidine proton);  

6.62 (d, 1H, furan proton), 6.94 (t, 1H, furan proton), 7.82 (d, 1H, furan proton), 8.12 (s, 1H, NH, D2O 

exchangeable). Anal. Calcd. For C27H32N2O3: C, 74.97 %; H, 7.46 %; N, 6.48%; Found: C, 74.75 %; H, 7.12%; N, 

6.32 %. 

17-[6-(4-Chlorophenyl)-2-thioxo-1, 2 -dihydro-pyrimidin-4-yl]-3-oxo-androst-4-ene 12c 

Yellow crystals from MeOH. Yield (76%), m.p. 148 ºC. Ms (m/z, %): 494[M+2, 12.1%]; 492[M+,36.1%]; 381[M+- P-

ClC6H4, 50.1%]; IR (KBr, cm
-1

): 3128 (NH), 3080 (C-H, aromatic); 2924 (CH3); 1699 (C=O); 1654 (C=C); 1609 

(C=N); 1190 (C=S). 
1
H-NMR (500 MHz, DMSO-d6, TMS): δ 0.71 (s, 3H, CH3-19); 1.09 (s, 3H, CH3-18); 5.63 (s, 

1H, CH-4, of progesterone), 6.87 (s, 1H, pyrimidine proton); 7.24 (d, 2H, aromatic protons); 7.35 (d, 2H, aromatic 

protons); 9.93 (s, 1H,NH, D2O exchangeable). Anal. Calcd. For C29H33ClN2OS: C, 70.60%; H, 6.75%; N, 5.68%; Cl, 

7.19. Found: C, 70.30%; H, 6.61%; N, 5.60%; Cl, 7.00%. 

17-(6-Furan-2-yl-2-thioxo-1, 2-dihydro-pyrimidin-4-yl)-3-oxo-androst-4-ene 12d 
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 Pale yellow crystals from MeOH. Yield (63%), m.p. 160 ºC. Ms (m/z, %): 448 [M
+
, 23.7%], 372 [M

+
- furan, 46%]. 

IR (KBr, cm
-1

): 3130 (NH), 3090 (C-H, aromatic); 2924 (CH3); 1698 (C=O); 1645 (C=C); 1603 (C=N); 1195 (C=S). 
1
H-NMR (500 MHz, DMSO-d6, TMS): δ 0.78 (s, 3H, CH3-19); 1.18 (s, 3H, CH3-18); 5.62 (s, 1H, CH-4, of 

progesterone), 6.62 (s, 1H, pyrimidine ring);  6.95 (d, 1H, furan proton), 7.35 (t, 1H, furan proton), 7.83 (d, 1H, furan 

proton), 10.01 (s, 1H, NH, D2O exchangeable). Anal. Calcd. For C27H32N2O2S: C, 72.29 %; H, 7.19 %; N, 6.24 %; 

Found: C, 72.01 %; H, 7.01%; N, 6.22 %. 

17-[2-Amino-6(4-chlorophenyl)-pyrimidin-4-yl] - 3-oxo-androst-4-ene 13a 

White crystals from MeOH.  Yield (70%), m.p. 118 ºC. Ms (m/z, %): 477[M
+2

, 6.3%]; 475[M
+
, 18.2%]; 364[M

+
- P-

ClC6H4, 47.1%]; IR (KBr, cm
-1

): 3363 (NH2), 3085 (C-H, aromatic); 2954 (CH3); 1700 (C=O); 1645 (C=C); 1609 

(C=N). 
1
H-NMR (500 MHz, DMSO-d6, TMS): δ 0.87 (s, 3H, CH3-19); 1.05 (s, 3H, CH3-18); 5.59 (s, 1H, CH-4, of 

progesterone), 6.52 (s, 1H, NH2, D2O exchangeable ), 6.54 (s, 1H, pyrimidine ring), 7.46 (d, 2H, aromatic protons); 

7.71 (d, 2H, aromatic protons).
 13

C-NMR (125 MHz, DMSO-d6, TMS): δ 20.0 (C-18); 22.5 (C-11); 22.8 (C-19); 

25.0(C-16); 26.6 (C-15); 31.3 (C-7); 32.3 (C-6); 34.0 (C-2); 35.0 (C-1); 35.5 (C-8); 36.2 (C-12); 37.2 (C-10); 42.1 

(C-13); 50.1 (C-9); 51.2 (C-17); 55.5 (C-14); 123.8 (C-4); 128.8, 129.0 131.4, 134.7 (C-aromatic); 98.6, 159.9, 

162.4, 165.0 (C-pyrimidine); 170.0 (C-5), 198.7 (C-3). Anal. Calcd. For C29H34ClN3O: C, 73.17%; H, 7.20%; N, 

8.83%; Cl, 7.45%. Found: C, 73.05%; H, 7.02%; N, 8.71%; Cl, 7.30%. 

17-(2-Amino-6-furan-2-yl-pyrimidin-4-yl)-3-oxo-androst-4-ene 13b 

Yellow crystals from Benzene. Yield (77%), m.p. 190 ºC. Ms (m/z, %): 431 [M
+
, 39.0%]; IR (KBr, cm

-1
): 3351 

(NH2), 3092 (C-H, aromatic); 2924 (CH3); 1699 (C=O); 1645 (C=C); 1611 (C=N). 
1
H-NMR (500 MHz, DMSO-d6, 

TMS): δ 0.89 (s, 3H, Me-19); 1.14 (s, 3H, -CH3-18); 5.62 (s, 1H, CH-4, of progesterone), 6.30 (s, 2H, NH2, D2O 

exchangeable ), 6.62 (s, 1H, pyrimidine ring); 6.92 (t, 1H, furan ring), 7.31 (d, 1H, furan ring), 7.83 (d, 1H, furan 

ring). Anal. Calcd . For C27H33N3O2: C, 75.14%; H, 7.71 %; N, 9.74%; Found: C, 75.01 %; H, 7.15 %; N, 9.22%. 

17-(1-Hydrazonoethyl)-10-(androst-4-ene-3-ylidene) hydrazone 14 

      To a solution of progesterone 1 (0.314 g, 0.001 mol) added  hydrazine hydrate 98% (0.05 g, 0.001 mol) in 

ethanol and refluxed for 1 h., the solvent was evaporated under reduced pressure and the residue was purified with 

the proper solvent. 

White crystals from EtOH. Yield (90%), mp. 180 ºC. Ms (m/z, %): 342 [M
+
, 34.5%]; IR (KBr, cm

-1
): 3343 (NH2), 

2872 (CH3), 1647 (C=C), 1043(C=N);. 
1
H-NMR (270 MHz, DMSO-d6, TMS): δ 0.81 (s, 3H, Me-19); 0.90 (s,3H, 

H3CC=NNH2); 1.09 (s, 3H, -CH3-18); 5.86 (s, 2H, NH2, D2O exchangeable); 5.61 (s, 1H, CH-4, of progesterone). 

Anal. Calcd. For C21H34N4: C, 73.60%; H, 10.10%; N, 16.40%; Found: C, 73.55%; H, 10.02%; N, 16.36%. 

17-(1-2-(phenylcarbamothioyl)hydrazono)ethyl)androst-4-ene-3-ylidine–N-phenylhydrazine-carbothioamide  15 

      To a solution of 14 (0.150 g, 0.001 mol) in ethanol (20 ml) phenyl isocyanate (0.135 g, 0.001 mol) was added. 

The reaction mixture was heated under reflux for about 4h., then cooling it to the room temperature and filters the 

product which crystallized from (EtOH). 

Yellow crystals from EtOH.  Yield, 71%, mp. 139 ºC. Ms (m/z, %): 612 [M
+
, 25.0%]; IR (KBr, cm

-1
): 3279 (br,NH), 

3016 (C-H, Aromatic), 2922 (CH3); 1595 (C=N), 1177 (C=S). 
1
H-NMR (270 MHz, DMSO-d6, TMS): δ 0.86 (s, 3H, 

Me-19); 0.91(s, 3H, CH3C=NNH); 1.11 (s, 3H, -CH3-18); 5.40 (s, 1H, CH-4, of progesterone);  6.64-7.11 (m, 10H, 

phenyl protons); 9.31 (s,1H, NNH, D2O exchangeable), 9.36 (s, 1H, NNH, D2O Exchangeable), 9.76(s, 1H, NHPh, 

D2O Exchangeable), 10.01 (s, 1H, NHPh, D2O Exchangeable).  Anal. Calcd. For C35H44N6S2: C, 68.60%; H, 7.20%; 

N, 13.70%; Found: C, 68.52%; H, 7.03%; N, 13.61 %. 

Cyclopenta[α]phenanthren-3-hydrazinyl-2-(phenylamino)-1, 3-oxathiolan-5-one 16 
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      To a solution of 15 (0.600 g, 0.001 mol) in benzene (20 ml), chloroacetic acid (0.094 g, 0.001 mol) was added. 

The reaction mixture was heated under reflux for about 3h. Then cooled to the room temperature and filtered the 

product was crystallized from (benzene). 

 Yellow crystal from benzene.  Yield 67%, mp. 162 ºC. Ms (m/z, %):728 [M
+
, 45.0%]; IR (KBr, cm

-1
): 3426(br,NH); 

3016 (C-H, Aromatic), 2922 (CH3); 2849 (CH2), 1726 (C=O, lactone), 1645 (C=C); 1600 (C=N); 1459 (CH2 

bending). 
1
H-NMR (270 MHz, DMSO-d6, TMS): δ 0.88 (s, 3H, Me-19); 0.91 (s. 3H, CH3-CH=N);  1.09 (s, 3H, -

CH3-18); 4.04 (d, 4H, 2CH2-C=O); 4.28 (s, 2H, 2NH-Ph, D2O exchangeable);  5.83 (s, 1H, CH-4, progesterone); 

7.31-7.64 (m, 12H, 10 aromatic protons +2 NH lactone). 
13

C-NMR (125 MHz, DMSO-d6, TMS): δ 20.5 (C-18), 22.2 

(C-11), 22.7 (C-19), 23.4 (C-16), 26.6 (C-2), 27.1 (C-15), 28.4 (CH2-lactone), 31.4 (C-7), 33.0 (C-6), 35.1 (C-8), 

37.1 (C-12), 37.5 (C-17), 38.5 (C-10), 39.1(C-1), 42.0 (C-13),50.1 (C-9),  56.0 (C-14), 111.5 (C-4), 113.2, 117.2, 

129.0, 147.6 (C-phenyl), 128.3 ( C-lactone), 155.3 (C-3), 164.6 (CH3-CH=N), 166.4 (C-5), 172.3 (C=O- lactone).  

Anal. Calcd. For C39H48N6 O4S2: C, 64.70%; H, 6.64%; N, 11.53%; Found: C, 64.10%; H, 6.22%; N, 11.01%. 

Bioassay 

Cytotoxic effect on human cell lines (HEPG2 & MCF7) 

  

      Cell viability was assessed by the mitochondrial dependent reduction of yellow MTT [3-(4, 5-dimethylthiazol-2-

yl)-2, 5-diphenyltetrazoliumbromide] to purple formazan
26

.  

 

Procedure: 

 

      All the following procedures were done in a sterile area using a Laminar flow cabinet biosafety class II level 

(Baker, SG403INT, and Sanford, ME, USA). Cells were batch cultured for 10 days, then seeded at concentration 

of 10x103 cells/well in fresh complete growth medium in 96-well microtiter plastic plates at 37 ºC for 24 h under 5% 

CO2 using a water jacketed Carbon dioxide incubator (Sheldon, TC2323, Cornelius, OR, USA). Media was 

aspirated, fresh medium (without serum) was added and cells were incubated either alone (negative control) or with 

different concentrations of sample to give a final concentration of (100.00 - 50.00 - 25.00 - 12.50 - 6.25 - 3.13 - 0.78 

and 1.56 µg/ml). Cells were suspended in RPMI 1640 medium (for HePG2 and MCF7), 1% antibiotic-antimycotic 

mixture (10,000 µg /ml Potassium Penicillin, 10,000 µg/ml Streptomycin Sulphate and 25 µg/ml Amphotericin B) 

and 1% L-glutamine in 96-well flat bottom micro plate at 37 ºC under 5% CO2.  After 48 h of incubation, medium 

was aspirated, 40 µl MTT salt (2.5 μg/ml) were added to each well and incubated for further four hours at 37ºC 

under 5% CO2. To stop the reaction and dissolving the formed crystals, 200 μL of 10% Sodium dodecyl sulphate 

(SDS) in deionized water was added to each well and incubated overnight at 37ºC. A positive control composed of 

100 µg/ml was used as a known cytotoxic natural agent gives 100% lethality under the same conditions.
 27

 

      The absorbance was then measured using a microplate multi-well reader (Bio-Rad Laboratories Inc., model 

3350, Hercules, California, USA) at 595nm and a reference wavelength of 620 nm. A statistical significance was 

tested between samples and negative control (cells with vehicle) using independent t-test by SPSS 11 program. 

DMSO is the vehicle used for dissolution of plant extracts and its final concentration on the cells was less than 0.2%. 

The percentage of change in viability was calculated according to the formula:  

((Reading of extract / Reading of negative control) -1) x 10. A probit analysis was carried for LC50 and LC90 

determination using SPSS 11 program. 

 

 

 

2. Results and discussion: 

 

      A simple one pot multicomponent reaction technique was utilized
 24

, for the synthesis of novel biologically active 

heterocyclic steroids. A mixture of progesterone 1, aromatic aldehyde 2 and malononitrile 3 were heated in absolute 

ethanol containing ammonium acetate under reflux to afford the corresponding aminoprogestanopyridine derivatives 

5a-c (Scheme 1). 
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(Scheme 1) 

      The formation of adducts 5a-c can be rationalized by initial formation of arylidene malononitrile 4 as fleeting 

intermediate via standard Knoevenagael condensation. This is followed by Michael type addition of progesterone 1 

to the activated double bond of the  arylidene  that furnished the adduct product to cyclisize via intramolecular 

rearrangement  yielding the desired product 5 (Scheme 2).  
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     The most important feature to confirm the aromatic structure of compound 5a was the absence of hydrogen 

proton in 
1
H-NMR spectrum of C-4 and NH of pyridine ring.  It showed D2O exchangeable of NH2 at δ 6.61 ppm. 

All the other analytical and spectroscopic data were in accordance with the suggested structure 5 (cf. exp. section)   

     To generalize such methodology and synthesize other different pyridine derivatives, the previous reactions were 

conducted using other methylene reagents like ω-cyano-acetophenone and ethylcyanoacetate to form the 

corresponding pyridine derivatives 6a-c and 7a, b respectively (Scheme 3). 

       The structures of these products were assigned based on the elemental analysis and other spectroscopic data. The 

IR spectra showed the presence of the nitrile group at 2219 cm
-1

 and the pyridinone carbonyl group ν 1689 cm
-1

, 

respectively in 7a, as an example. On the other hand the 
1
H-NMR revealed the absence of the characteristic signals 

of the ester ethyl and the amino groups (c.f.exp. section). 

ArCHO+ CH3COONH4
1

N

Ar

CN

Ph

6a-C

PhCOCH2CN

CH3COONH4

NCCH2COOEt

NH

Ar

CN

O

7a,b

Ar=  a: Ph

         b: 4-ClC6H4

         c: 2,5-(OCH3)2C6H3

 Ar=    a: Ph

            b: 2,5-(OCH3)2C6H3

NH

Ar

COOEt

NH2

8

 

(Scheme 3) 

     It is believed that compound 8 was not formed due to steric effect because ester group is   more bulky than cyano 

group, so the formation of 7 is more stable.  

    Carrying out the previous reaction in the presence of piperidine instead of ammonium acetate led to the formation 

of the aminoprogesteno pyran derivatives 9 and 10 respectively (Scheme 4). All the micro-analysis and spectroscopic 

data were in accordance with the suggested structures 9a-c and 10a, b (c.f. exp. section). 
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piperidinepiperidine

 

(Scheme 4) 

     For more utility of the previous phenomena to synthesize different active heterocyclic steroids; urea, thiourea and 

guanidine were used. A mixture of progesterone 1, aldehydes and nitrogen reagents 11 and guanidine were allowed 

to react in freshly prepared sodium methoxide to form the corresponding pyrimidine derivatives 12a-d and 13a, b 

respectively (Scheme 5). 
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X

X
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(Scheme 5) 

      Structure elucidation of 12a was derived from its spectral data; IR spectrum reflected characteristic bands to the 

pyrimidine carbonyl group at ν 1659 cm
-1

 and NH band at ν 3158 cm
-1

. The 
1
H-NMR showed a singlet at δ 6.97 ppm 

of pyrimidine proton and D2O exchangeable signals at δ 7.91 ppm for the NH group.  

      Furthermore, this study was extended to include the behaviour of progesterone 1 towards hydrazine hydrate to 

produce the hydrazone derivative 14 which was confirmed with analytical and spectroscopic data. Compound 14 was 

allowed to react with phenyl isothiocyanate to produce the corresponding acyclic structure 15. (Scheme 6) 

   The 
1
H-NMR of adduct 15 reflect the existence of the aromatic protons beside 4NH D2O exchangeable signals at δ 

9.31, 9.36, 9.76, 10.01, respectively (c.f., exp. Section).  
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(Scheme 6) 

      The thiobenzoyl adduct 15 was allowed to react with chloroacetic acid in boiling benzene afforded the lactone 16 

adduct via SN2 mechanism on alkyl moiety rather than carboxyl group (chlorine atom is good leaving group) 

followed by cyclization on the activated C=N yielded the desired product 16 (Scheme 7). 
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                                                                            (Scheme 7) 

      The IR spectrum of compound 16 exhibits strong absorption bands at ν 1600, 1726 cm
-1

 due to C=N and C=O of 

γ-lactone
28

 (the lower frequency of carbonyl of lactone is due to transannular effect of sulphur atom through the 

ring). The 
1
H-NMR spectrum of compound 16 when run in DMSO (d6) showed the two singlets appearing at 4.04& 

4.28 ppm respectively attributed to CH2   lactone and NHPh. The 
13

C-NMR explains the chiral carbon at δ128.3ppm 

(c.f., exp. Section). 

Bioactivity 

Antitumor activity 

 

      Cytotoxicity of Pyridine, Pyran, and Pyrimidine derivatives 5a, 5b, 6b, 7a, 9b, 9c, 12a, 12c, and 13a were 

bioassayed against two human tumour cell lines namely hepatocellular carcinoma cell line (HEPG2) and Caucasian 
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breast adenocarcinoma (MCF7) at Bioassay-Cell Culture Laboratory, National Research Centre, Egypt. LC50 of 

promising compounds were calculated after 48 h of continuous drug exposure as shown in Table (1).  

 

 

  

Table (1): Cytotoxic activity of some new pyridine, pyran, and pyrimidine derivatives against HEPG2 and MCF7 

 

Code sample 

LC50 (µg/mL) 

HEPG2 MCF7 

Standard 

(Doxorubicin) 

 

22.6 

 

42.5 

5a 55.2 49.8 

5b 58.7 51.4 

6b ----- 78.8 

7a 19.6 22.3 

9b 71.8 ----- 

9c ----- 84.5 

12a 12.7 22.6 

12c ----- ------ 

13a 12.2 8.5 

 

       The results displayed in Table (1), the values of LC50 of the compounds 13a, 12a and 7a have high cytotoxic 

effect more than doxorubicin the chosen anticancer drug in both cell lines. Regarding HEPG2 cell line, LC50 values 

are nearly half that of the standard and their LC50 are 12.2 and 12.7 µg/ml for 13a, 12a respectively and 19.6 µg/ml 

for 7a.  While compounds 9b, 5a and 5b have moderate exhibit activity against same cell line with LC50 are 71.8, 

55.2 µg/ml and 58.7 µg/ml, respectively.  Also, the results indicate that compounds 6b, 9c and 12c have no activity 

against liver anticancer cells (Fig. 1). Bio- assayed antitumor activity of the tested compounds against breast cancer 

cell lines MCF7.  The results indicated that compounds 13a, 7a, 12a have highest anticancer activity in comparison 

with that of the standard drug since its LC50 is 8.5, 22.3, and 22.6 µg/ml, respectively, while that of the standard 

equal to 42.5 µg/ml. On the other hand, compounds 5a, 6b, and 9c showed very low breast anticancer activity, while 

the 12c and 9b compounds are of no cytotoxicity (Fig. 2). Therefore, it could be concluded that compounds 13a, 12a, 

and 7a have high cytotoxic activity against both types of liver and breast cancer cells subjected in this study. The 

above mentioned results revealed that the materials under investigation have killing potency to the cancer cells with 

low concentrations and can be arranged in the following order: progesterone pyrimidine > pyridine > pyran. This 

may be attributable to the presence of nitrogen moiety in the ring. 
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