124 research outputs found

    The (impossible?) formation of acetaldehyde on the grain surfaces: insights from quantum chemical calculations

    Full text link
    Complex Organic Molecules (COMs) have been detected in the interstellar medium (ISM). However, it is not clear whether their synthesis occurs on the icy surfaces of interstellar grains or via a series of gas-phase reactions. As a test case of the COMs synthesis in the ISM, we present new quantum chemical calculations on the formation of acetaldehyde (CH3CHO) from the coupling of the HCO and CH3 radicals, both in gas phase and on water ice surfaces. The binding energies of HCO and CH3 on the amorphous water ice were also computed (2333 and 734 K, respectively). Results indicate that, in gas phase, the products could be either CH3CHO, CH4 + CO, or CH3OCH, depending on the relative orientation of the two radicals. However, on the amorphous water ice, only the CH4 + CO product is possible due to the geometrical constraints imposed by the water ice surface. Therefore, acetaldehyde cannot be synthesized by the CH3 + HCO coupling on the icy grains. We discuss the implications of these results and other cases, such as ethylene glycol and dimethyl ether, in which similar situations can occur, suggesting that formation of these molecules on the grain surfaces might be unlikely

    Reactions of oxygen atoms with aliphatic and aromatic hydrocarbons by crossed beam experiments

    Get PDF

    A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C2H5, radicals: a possible gas-phase formation route of interstellar and planetary ethanimine

    Get PDF
    The reaction between the amidogen, NH, radical and the ethyl, C2H5, radical has been investigated by performing electronic structure calculations of the underlying doublet potential energy surface. Rate coefficients and product branching ratios have also been estimated by combining capture and RRKM calculations. According to our results, the reaction is very fast, close to the gas-kinetics limit. However, the main product channel, with a yield of ca. 86-88% in the range of temperatures investigated, is the one leading to methanimine and the methyl radical. The channels leading to the two E-, Z- stereoisomers of ethanimine account only for ca. 5-7% each. The resulting ratio [E-CH3CHNH]/[Z-CH3CHNH] is ca. 1.2, that is a value rather lower than that determined in the Green Bank Telescope PRIMOS radio astronomy survey spectra of Sagittarius B2 North (ca. 3). Considering that ice chemistry would produce essentially only the most stable isomer, a possible conclusion is that the observed [E-CH3CHNH]/[Z-CH3CHNH] ratio is compatible with a combination of gas-phase and grain chemistry. More observational and laboratory data are needed to definitely address this issue

    Investigating the Efficiency of Explosion Chemistry as a Source of Complex Organic Molecules in TMC-1

    Get PDF
    Many species of complex organic molecules (COMs) have been observed in several astrophysical environments but it is not clear how they are produced, particularly in cold, quiescent regions. One process that has been proposed as a means to enhance the chemical complexity of the gas phase in such regions is the explosion of the ice mantles of dust grains. In this process, a build up of chemical energy in the ice is released, sublimating the ices and producing a short lived phase of high density, high temperature gas. The gas-grain chemical code UCLCHEM has been modified to treat these explosions in order to model the observed abundances of COMs towards the TMC-1 region. It is found that, based on our current understanding of the explosion mechanism and chemical pathways, the inclusion of explosions in chemical models is not warranted at this time. Explosions are not shown to improve the model's match to the observed abundances of simple species in TMC-1. Further, neither the inclusion of surface diffusion chemistry, nor explosions, results in the production of COMs with observationally inferred abundances.Comment: Accepted for publication in Ap

    Can Formamide Be Formed on Interstellar Ice? An Atomistic Perspective

    Full text link
    Interstellar formamide (NH2CHO) has recently attracted significant attention due to its potential role as a molecular building block in the formation of precursor biomolecules relevant for the origin of life. Its formation, whether on the surfaces of the interstellar grains or in the gas phase, is currently debated. The present article presents new theoretical quantum chemical computations on possible NH2CHO formation routes in water-rich amorphous ices, simulated by a 33-H2O-molecule cluster. We have considered three possible routes. The first one refers to a scenario used in several current astrochemical models, that is, the radical-radical association reaction between NH2 and HCO. Our calculations show that formamide can indeed be formed, but in competition with formation of NH3 and CO through a direct H transfer process. The final outcome of the NH2 + HCO reactivity depends on the relative orientation of the two radicals on the ice surface. We then analyzed two other possibilities, suggested here for the first time: reaction of either HCN or CN with water molecules of the ice mantle. The reaction with HCN has been found to be characterized by large energy barriers and, therefore, cannot occur under the interstellar ice conditions. On the contrary, the reaction with the CN radical can occur, possibly leading through multiple steps to the formation of NH2CHO. For this reaction, water molecules of the ice act as catalytic active sites since they help the H transfers involved in the process, thus reducing the energy barriers (compared to the gas-phase analogous reaction). Additionally, we apply a statistical model to estimate the reaction rate coefficient when considering the cluster of 33-H2O-molecules as an isolated moiety with respect to the surrounding environment, i.e., the rest of the ice

    Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study

    Get PDF
    Dimethyl ether is one of the most abundant interstellar complex organic molecules. Yet its formation route remains elusive. In this work, we have performed electronic structure and kinetics calculations to derive the rate coefficients for two ion-molecule reactions recently proposed as a gas-phase formation route of dimethyl ether in interstellar objects, namely CH3_3OH + CH3_3OH2+_2^+ \rightarrow (CH3_3)2_2OH+^+ + H2_2O followed by (CH3_3)2_2OH+^+ + NH3_3 \rightarrow CH3_3OCH3_3 + NH4+_4^+. A comparison with previous experimental rate coefficients for the reaction CH3_3OH + CH3_3OH2+_2^+ sustains the accuracy of the present calculations and allow a more reliable extrapolation at the low temperatures of interest in interstellar objects (10-100 K). The rate coefficient for the reaction (CH3_3)2_2OH+^+ + NH3_3 is, instead, provided for the first time ever. The rate coefficients derived in this work essentially confirm the prediction by Taquet et al. (2016) concerning dimethyl ether formation in hot cores/corinos. Nevertheless, this formation route cannot be efficient in cold objects (like prestellar cores) where dimethyl ether is also detected, because ammonia has a very low abundance in those environments

    Destruction of dimethyl ether and methyl formate by collisions with He+^+

    Full text link
    To correctly model the abundances of interstellar complex organic molecules (iCOMS) in different environments, both formation and destruction routes should be appropriately accounted for. While several scenarios have been explored for the formation of iCOMs via grain and gas-phase processes, much less work has been devoted to understanding the relevant destruction pathways, with special reference to (dissociative) charge exchange or proton transfer reactions with abundant atomic and molecular ions such as He+^+, H3+_3^+ and HCO+^+. By using a combined experimental and theoretical methodology we provide new values for the rate coefficients and branching ratios (BRs) of the reactions of He+^+ ions with two important iCOMs, namely dimethyl ether (DME) and methyl formate (MF). We also review the destruction routes of DME and MF by other two abundant ions, namely H3+_3^+ and HCO+^+. Based on our recent laboratory measurements of cross sections and BRs for the DME/MF + He+^+ reactions over a wide collision energy range, we extend our theoretical insights on the selectivity of the microscopic dynamics to calculate the rate coefficients k(T)k(T) in the temperature range from 10 to 298 K. We implement these new and revised kinetic data in a general model of cold and warm gas, simulating environments where DME and MF have been detected. Due to stereodynamical effects present at low collision energies, the rate coefficients, BRs and temperature dependences here proposed differ substantially from those reported in KIDA and UDfA, two of the most widely used astrochemical databases. These revised rates impact the predicted abundances of DME and MF, with variations up to 40% in cold gases and physical conditions similar to those present in prestellar coresComment: accepted for publication in Astronomy and Astrophysics (manuscript no. AA/2018/34585), 10 pages, 3 figure

    The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid and formic acid

    Get PDF
    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesised is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this article, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of ten, which might imply a yet incomplete reaction network
    corecore