12 research outputs found

    Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach

    Get PDF
    Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient’s immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients

    Predictive value of tyrosine phosphatase receptor gamma for the response to treatment tyrosine kinase inhibitors in chronic myeloid leukemia patients.

    Get PDF
    Protein tyrosine phosphatase receptor gamma (PTPRG) is a member of the receptor-like family protein tyrosine phosphatases and acts as a tumor suppressor gene in different neoplasms. Recent studies reported the down-regulation of PTPRG expression levels in Chronic Myeloid Leukemia disease (CML). In addition, the BCR-ABL1 transcript level is currently a key predictive biomarker of CML response to treatment with Tyrosine Kinase Inhibitors (TKIs). The aim of this study was to employ flow cytometry to monitor the changes in the expression level of PTPRG in the white blood cells (WBCs) of CML patients at the time of diagnosis and following treatment with TKIs. WBCs from peripheral blood of 21 CML patients were extracted at diagnosis and during follow up along with seven healthy individuals. The PTPRG expression level was determined at protein and mRNA levels by both flow cytometry with monoclonal antibody (TPγ B9-2) and RT-qPCR, and BCR-ABL1 transcript by RT-qPCR, respectively. PTPRG expression was found to be lower in the neutrophils and monocytes of CML patients at time of diagnosis compared to healthy individuals. Treatment with TKIs nilotinib and Imatinib Mesylate restored the expression of PTPRG in the WBCs of CML patients to levels observed in healthy controls. Moreover, restoration levels were greatest in optimal responders and occurred earlier with nilotinib compared to imatinib. Our results support the measurement of PTPRG expression level in the WBCs of CML patients by flow cytometry as a monitoring tool for the response to treatment with TKIs in CML patients

    Management of chronic myeloid leukaemia: current treatment options, challenges, and future strategies.

    Get PDF
    Small molecule therapy is a critical component of targeted anticancer treatment, with tyrosine kinase inhibitors (TKIs) being the first compounds to treat the clonal Chronic Myelogenous Leukaemia (CML) translocation t (9;22) (q34; q11) effectively since 2001. TKIs, such as imatinib, have improved the 10-year survival rate of CML patients to 80%. They bind the kinase and inhibit downstream signaling pathways. However, therapy failure may be seen in 20-25% of CML patients due to intolerance or inadequacy related to dependent or independent mechanisms. This review aimed to summarize current treatment options involving TKIs, resistance mechanisms and the prospective approaches to overcome TKI resistance. We highlight -dependent mechanisms of TKI resistance by reviewing clinically-documented mutations and their consequences for TKI binding. In addition, we summarize independent pathways, including the relevance of drug efflux, dysregulation of microRNA, and the involvement of alternative signaling pathways. We also discuss future approaches, such as gene-editing techniques in the context of CML, as potential therapeutic strategies

    Follow up and comparative assessment of IgG, IgA, and neutralizing antibody responses to SARS-CoV-2 between mRNA-vaccinated naïve and unvaccinated naturally infected individuals over 10 months

    Get PDF
    BackgroundEvidence on the effectiveness of vaccination-induced immunity compared to SARS-CoV-2 natural immunity is warranted to inform vaccination recommendations. AimIn this study, we aimed to conduct a comparative assessment of antibody responses between vaccinated naïve (VN) and unvaccinated naturally infected individuals (NI) over 10 Months. MethodThe study comprised fully-vaccinated naïve individuals (VN; n = 596) who had no history of SARS-CoV-2 infection, and received two doses of either BNT162b2 or mRNA-1273, and naturally infected individuals who had a documented history of SARS-CoV-2 infection and no vaccination record (NI cohort; n = 218). We measured the levels of neutralizing total antibodies (NtAbs), anti-S-RBD IgG, and anti-S1 IgA titers among VN and NI up to ∼10 months from administration of the first dose, and up to ∼7 months from SARS-CoV-2 infection, respectively. To explore the relationship between the antibody responses and time, Spearman's correlation coefficient was computed. Furthermore, correlations between the levels of NtAbs/anti-S-RBD IgG and NtAbs/anti-S1 IgA were examined through pairwise correlation analysis. ResultsUp to six months, VN individuals had a significantly higher NtAb and anti-S-RBD IgG antibody responses compared to NI individuals. At the 7th month, there was a significant decline in antibody responses among VN individuals, but not NI individuals, with a minimum decrease of 3.7-fold (p < 0.001). Among VN individuals, anti-S1 IgA levels began to decrease significantly (1.4-fold; p = 0.007) after two months, and both NtAb and S-RBD IgG levels began to decline significantly (NtAb: 2.0-fold; p = 0.042, S-RBD IgG: 2.4-fold; p = 0.035) after three months. After 10 months, the most significant decline among VN individuals was observed for S-RBD-IgG (30.0-fold; P < 0.001), followed by NtAb (15.7-fold; P < 0.001) and S-IgA (3.7-fold; P < 0.001) (most stable). Moreover, after 5 months, there was no significant difference in the IgA response between the two groups. ConclusionThese findings have important implications for policymakers in the development of vaccination strategies, particularly in the consideration of booster doses to sustain long-lasting protection against COVID-19.This work was made possible by WHO grant number COVID-19-22-43 and grant number UREP28-173-3-057 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

    Making Biomarkers Relevant to Healthcare Innovation and Precision Medicine

    No full text
    Translational medicine, the exchange between laboratory (bench) and the clinic (bedside), is decidedly taking on a vital role. Many companies are now focusing on a translational medicinal approach as a therapeutic strategy in decision making upon realizing the expenses of drug attrition in late-stage advancement. In addition, the utility of biomarkers in clinical decision and therapy guidance seeks to improve the patient outcomes and decrease wasteful and harmful treatment. Efficient biomarkers are crucial for the advancement of diagnoses, better molecular targeted therapy, along with therapeutic advantages in a broad spectrum of various diseases. Despite recent advances in the discovery of biomarkers, the advancement route to a clinically validated biomarker remains intensely challenging, and many of the candidate biomarkers do not progress to clinical applications, thereby widening the innovation gap between research and application. The present article will focus on the clinical view of biomarkers in a reverse design, addressing how a biomarker program should appear if it is expected to create an impact on personalized medicine and patient care

    Novel Molecular Findings in Protein Tyrosine Phosphatase Receptor Gamma (PTPRG) Among Chronic Myelocytic Leukemia (CML) Patients Studied By Next Generation Sequencing (NGS): A Pilot Study in Patients from the State of Qatar and Italy

    No full text
    Background: Chronic Myelocytic Leukemia (CML) is a clonal myeloproliferative disorder characterized by constitutive phosphorylation of Protein Tyrosine kinases (PTKS) that continuously activates multiple proliferative and antiapoptotic signaling pathways. Protein Tyrosine Phosphatases (PTPs) on the other hand is potential natural inhibitory mechanism for regulating the tyrosine kinase activities in which phosphorylation is reciprocally controlled and maintained in equilibrium state by PTKs and PTPs. As a member of PTPs family, Protein Tyrosine Phosphatase Receptor Gamma (PTPRG) was found to act as a tumor suppressor gene. This negative regulatory mechanism of PTPRG was observed to be down-regulated and disabled in CML and one of the possible mechanisms that alter the \ufffc\ufffc\ufffc \ufffcnegative regulatory effect of PTPs is mutations. Several mutations have been identified in PTPs in many different leukemias such as Acute Myeloid Leukemia (AML), Juvenile MyeloMonocytic Leukemia (JMML), Myelodysplasic Syndrome (MDS), B- cell Acute Lymphoblastic Leukemia (B-ALL) and these mutations are associated with hyper- cellular proliferation, disease progression and poor outcome. However, relatively little is known about PTPRG mutations and no studies on CML are available in the literature while mutations inBCR-ABL1tyrosine kinase have been extensively characterized. Thus, understanding the role of PTPRG in antagonizing the PTK phosphorylation of BCR-ABL1 will be important to determine its role in CML development and progression. Aim: 1) To identify potential genetic alterations causing inactivation of PTPRG and 2) correlate the PTPRG findings with patients' response to the Tyrosine kinase Inhibitors. Methods: 16 CML patients, 9 from Qatar and 7 from Italy respectively, were studied for PTPRG mutations by exome sequencing. Custom primers were designed for Human PTPRG gene (5 Kb of exonic region of interest) using Ion AmpliSeq Designer. Target regions were enriched and amplified for the 16 DNA samples using Ion AmpliSeq Library kit 2.0. The amplicons were partially digested with FuPa reagent and phosphorylated prior to ligation of Ion Xpress Barcode Adapters followed by cleanup using HighPrep reagent. The adapter ligated molecules were enriched with adapter specific primers using a limited cycle PCR followed by a cleanup using HighPrep reagent. The final libraries were quantified on Qubit Flurometer using Qubit dsDNA HS Assay Kit and Agilent Bioanalyzer using Agilent High Sensitivity DNA Kit. All samples were pooled according to the concentrations on the Bioanalyzer and loaded on Ion 318TM Chip kit V2 to be sequenced on Ion Personal Genome Machine (PGM) system. European Leukemia Net (ELN) 2013 criteria were employed to assess the response/resistance of patients to treatment. Responses are defined at the hematological, cytogenetic and molecular levels. Patients response was classified into optimal and failure Results: Four mutations/variants were identified in PTPRG genes, three were missense Y92H, G574S, S561Y and 1 was frameshift Y285fs in the 16 CML patients. PTPRG Y92H was identified in 5 (1 Homozygous and 4 heterozygous alleles) patients and the 5 patient failed the Imatinib Mesylate (IM) treatment. On the other hand, The PTPRG G574S was identified in 6 (2 homozygous and 4 heterozygous alleles) patients. Out of the 6 patients, 4 were classified as failure to the treatment and 2 responded optimally. In addition, the PTPRG S561Y and Y285fs were identified on 1 and 3 patients respectively and these patients responded optimally to IM treatment. Discussion and Conclusions: This is the first prospective pilot study to investigate PTPRG gene mutations as underlying mechanism to explain treatment failure. Our preliminary data showed that the identified variant PTPRG Y92H might be associated with IM failure although it has been reported as Single Nucleotide Polymorphisms (SNPs) (rs62620047) and this could be attributed that some polymorphisms might behave like a mutation. On the other hand, PTPRG G574S variant (rs2292245) showed various clinical outcomes regardless to its allele zygosity as 67% (4/6) of patients failed the TKIs treatment. From the results of our pilot study we recommend carrying out PTPRG sequencing in a significantly larger cohort of patients to further explore and pinpoint the crucial mutations that can be correlated with CML resistance/response to treatment

    Aberrant DNA methylation of PTPRG as one possible mechanism of its under-expression in CML patients in the state of Qatar

    Get PDF
    Several studies showed that aberrant DNA methylation is involved in leukemia and cancer pathogenesis. Protein tyrosine phosphatase receptor gamma (PTPRG) expression is a natural inhibitory mechanism that is downregulated in chronic myeloid leukemia (CML) disease. The mechanism behind its downregulation has not been fully elucidated yet. This study aimed to investigate the CpG methylation status at the PTPRG locus in CML patients. Peripheral blood samples from CML patients at time of diagnosis [no tyrosine kinase inhibitors (TKIs)] (n = 13), failure to (TKIs) treatment (n = 13) and healthy controls (n = 6) were collected. DNA was extracted and treated with bisulfite treatment, followed by PCR, sequencing of 25 CpG sites in the promoter region and 26 CpG sites in intron-1 region of PTPRG. The bisulfite sequencing technique was employed as a high-resolution method. CML groups (new diagnosed and failed treatment) showed significantly higher methylation levels in the promoter and intron-1 regions of PTPRG compared to the healthy group. There were also significant differences in methylation levels of CpG sites in the promoter and intron-1 regions amongst the groups. Aberrant methylation of PTPRG is potentially one of the possible mechanisms of PTPRG downregulation detected in CML

    Follow up and comparative assessment of IgG, IgA, and neutralizing antibody responses to SARS-CoV-2 between mRNA-vaccinated naïve and unvaccinated naturally infected individuals over 10 months

    No full text
    Background: Evidence on the effectiveness of vaccination-induced immunity compared to SARS-CoV-2 natural immunity is warranted to inform vaccination recommendations. Aim: In this study, we aimed to conduct a comparative assessment of antibody responses between vaccinated naïve (VN) and unvaccinated naturally infected individuals (NI) over 10 Months. Method: The study comprised fully-vaccinated naïve individuals (VN; n = 596) who had no history of SARS-CoV-2 infection, and received two doses of either BNT162b2 or mRNA-1273, and naturally infected individuals who had a documented history of SARS-CoV-2 infection and no vaccination record (NI cohort; n = 218). We measured the levels of neutralizing total antibodies (NtAbs), anti-S-RBD IgG, and anti-S1 IgA titers among VN and NI up to ∼10 months from administration of the first dose, and up to ∼7 months from SARS-CoV-2 infection, respectively. To explore the relationship between the antibody responses and time, Spearman's correlation coefficient was computed. Furthermore, correlations between the levels of NtAbs/anti-S-RBD IgG and NtAbs/anti-S1 IgA were examined through pairwise correlation analysis. Results: Up to six months, VN individuals had a significantly higher NtAb and anti-S-RBD IgG antibody responses compared to NI individuals. At the 7th month, there was a significant decline in antibody responses among VN individuals, but not NI individuals, with a minimum decrease of 3.7-fold (p < 0.001). Among VN individuals, anti-S1 IgA levels began to decrease significantly (1.4-fold; p = 0.007) after two months, and both NtAb and S-RBD IgG levels began to decline significantly (NtAb: 2.0-fold; p = 0.042, S-RBD IgG: 2.4-fold; p = 0.035) after three months. After 10 months, the most significant decline among VN individuals was observed for S-RBD-IgG (30.0-fold; P < 0.001), followed by NtAb (15.7-fold; P < 0.001) and S-IgA (3.7-fold; P < 0.001) (most stable). Moreover, after 5 months, there was no significant difference in the IgA response between the two groups. Conclusion: These findings have important implications for policymakers in the development of vaccination strategies, particularly in the consideration of booster doses to sustain long-lasting protection against COVID-19

    Association of single nucleotide polymorphisms with dyslipidemia and risk of metabolic disorders in the State of Qatar

    Get PDF
    Background: Dyslipidemia is recognized as one of the risk factors of cardiovascular diseases (CVDs), type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD). Objective: The study aimed to investigate the association between selected single nucleotide polymorphisms (SNPs) with dyslipidemia and increased susceptibility risks of CVD, NAFLD, and/or T2DM in dyslipidemia patients in comparison with healthy control individuals from the Qatar genome project. Methods: A community-based cross-sectional study was conducted among 2933 adults (859 dyslipidemia patients and 2074 healthy control individuals) from April to December 2021 to investigate the association between 331 selected SNPs with dyslipidemia and increased susceptibility risks of CVD, NAFLD and/or T2DM, and covariates. Results: The genotypic frequencies of six SNPs were found to be significantly different in dyslipidemia patients subjects compared to the control group among males and females. In males, three SNPs were found to be significant, the rs11172113 in over-dominant model, the rs646776 in recessive and over-dominant models, and the rs1111875 in dominant model. On the other hand, two SNPs were found to be significant in females, including rs2954029 in recessive model, and rs1801251 in dominant and recessive models. The rs17514846 SNP was found for dominant and over-dominant models among males and only the dominant model for females. We found that the six SNPs linked to gender type had an influence in relation to disease susceptibility. When controlling for the four covariates (gender, obesity, hypertension, and diabetes), the difference between dyslipidemia and the control group remained significant for the six variants. Finally, males were three times more likely to have dyslipidemia in comparison with females, hypertension was two times more likely to be present in the dyslipidemia group, and diabetes was six times more likely to be in the dyslipidemia group. Conclusion: The current investigation provides evidence of association for a common SNP to coronary heart disease and suggests a sex-dependent effect and encourage potential therapeutic applications. Keywords: Qatar genome project (QGP); cardiovascular disease (CVD); coronary artery disease (CAD); diabetes; dyslipidemia; hypertension; metabolic; non-alcoholic fatty liver disease (NAFLD); single nucleotide polymorphism (SNP). © 2023 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC

    Assessment of the Neutralizing Antibody Response of BNT162b2 and mRNA-1273 SARS-CoV-2 Vaccines in Naïve and Previously Infected Individuals: A Comparative Study

    Get PDF
    The currently authorized mRNA COVID-19 vaccines, Pfizer-BNT162b2 and Moderna-mRNA-1273, offer great promise for reducing the spread of the COVID-19 by generating protective immunity against SARS-CoV-2. Recently, it was shown that the magnitude of the neutralizing antibody (NAbs) response correlates with the degree of protection. However, the difference between the immune response in naïve mRNA-vaccinated and previously infected (PI) individuals is not well studied. We investigated the level of NAbs in naïve and PI individuals after 1 to 26 (median = 6) weeks of the second dose of BNT162b2 or mRNA-1273 vaccination. The naïve mRNA-1273 vaccinated group (n = 68) generated significantly higher (~2-fold, p ≤ 0.001) NAbs than the naïve BNT162b2 (n = 358) group. The P -vaccinated group (n = 42) generated significantly higher (~3-fold; p ≤ 0.001) NAbs levels than the naïve-BNT162b2 (n = 426). Additionally, the older age groups produced a significantly higher levels of antibodies than the young age group (>30) (p = 0.0007). Our results showed that mRNA-1273 generated a higher NAbs response than the BNT162b2 vaccine, and the PI group generated the highest level of NAbs response regardless of the type of vaccine.This work was made possible by grant number UREP28-173-3-057 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors
    corecore