365 research outputs found

    Progress on the Interaction Region Design and Detector Integration at Jlab\u27s MEIC

    Get PDF
    One of the unique features of JLab\u27s Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region\u27s modularity for ease of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary provisions for non-linear dynamical optimization

    Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    Full text link
    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.Comment: 160 pages, ~93 figures This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177, DE-AC02-06CH11357, DE-AC05-060R23177, and DESC0005823. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purpose

    Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    Full text link
    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.Comment: 21 pages, 28 figure

    MEIC Design Progress

    Get PDF
    This paper will report the recent progress in the conceptual design of MEIC, a high luminosity medium energy polarized ring-ring electron-ion collider at Jefferson lab. The topics and achievements that will be covered are design of the ion large booster and the ERL-circulator-ring-based electron cooling facility, optimization of chromatic corrections and dynamic aperture studies, schemes and tracking simulations of lepton and ion polarization in the figure-8 collider ring, and the beam-beam and electron cooling simulations. A proposal of a test facility for the MEIC electron cooler will also be discussed

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π + electroproduction reaction Îł ∗ p → n π + . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q 2 < 6 GeV 2 . Results were obtained for about 6000 bins in W ,   Q 2 ,   cos ( Ξ ∗ ) , and ϕ ∗ . Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2 , for resonances with masses as high as 2.4 GeV

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0

    Full text link
    High-statistics measurements of differential cross sections and recoil polarizations for the reaction Îłp→K+ÎŁ0\gamma p \rightarrow K^+ \Sigma^0 have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (s\sqrt{s}) from 1.69 to 2.84 GeV, with an extensive coverage in the K+K^+ production angle. Independent measurements were made using the K+pπ−K^{+}p\pi^{-}(Îł\gamma) and K+pK^{+}p(π−,Îł\pi^-, \gamma) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in s\sqrt{s} coverage. Above s≈2.5\sqrt{s} \approx 2.5 GeV, tt- and uu-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization (PÎŁP_\Sigma) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that PÎŁP_\Sigma is of the same magnitude but opposite sign as PΛP_\Lambda, in agreement with the static SU(6) quark model prediction of PΣ≈−PΛP_\Sigma \approx -P_\Lambda. This expectation is violated in some mid- and backward-angle kinematic regimes, where PÎŁP_\Sigma and PΛP_\Lambda are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.Comment: 23 pages, 17 figure
    • 

    corecore