29 research outputs found

    First Application of Articulated Concrete Block Armoring with a Stabilized Stone Drainage Layer

    Get PDF
    Results from recent hydraulic testing of Articulated Concrete Block (ACB) systems have shown variations in the level of the ACB surface is attributed to the movement of an unconfined stone drainage layer. This movement appears to be exacerbated by thicker drainage layers, higher overtopping depths, and longer test flumes. While the apparent movement did not constitute “threshold of performance” as currently defined by ASTM D7276 and D7277, there was a desire to mitigate movement of the stone drainage layer and maintain conservatism in ACB design and construction. This paper will review the findings of Nadeau and Wedin’s paper from Protections 2018, which proposed an ACB system with a stone drainage layer stabilized with geocell to increase ACB performance under steady state and hydraulic jump conditions. A similar ACB system was recently designed and constructed to provide overtopping protection at Hollymead Lake Dam located near Charlottesville, VA. The system was selected for added conservatism to address overtopping depths approaching 1.6m (5.4-ft), hydraulic jump conditions occurring on the downstream slope, and other complex flow conditions due to site geometry. The authors believe this to be the first application of its kind. Design and analysis of the Hollymead Lake Dam ACB will be summarized and include a comparison of the factor of safety with and without the geocell stabilized stone drainage layer. The project was completed in November 2019. Details from construction will also be presented

    ACB armoring potential failure modes at dam embankments and spillways

    Get PDF
    Presented at the Protections 2016: 2nd international seminar on dam protection against overtopping: concrete dams, embankment dams, levees, tailings dams held on 7th-9th September, 2016, at Colorado State University in Fort Collins, Colorado, USA. The increasing demand for dam and levee safety and flood protection has motivated new research and advancements and a greater need for cost-effective measures in overtopping protection as a solution for overtopping concerns at levees and dams. This seminar will bring together leading experts from practice, research, development, and implementation for two days of knowledge exchange followed by a technical tour of the Colorado State University Hydraulic Laboratory with overtopping flume and wave simulator. This seminar will focus on: Critical issues related to levees and dams; New developments and advanced tools; Overtopping protection systems; System design and performance; Applications and innovative solutions; Case histories of overtopping events; Physical modeling techniques and recent studies; and Numerical modeling methods.Includes bibliographical references.Over the past 26 years numerous embankment dams and earth-cut spillways in the United States have been armored using Articulating Concrete Blocks (ACBs) to provide erosion protection. Several dams and spillways armored with ACBs have been overtopped and performed satisfactorily with overtopping flow depths and velocities approaching 4 feet and 30 feet per second, respectively. Over the same period, some ACB overtopping applications have failed and others have experienced damage requiring maintenance to make the ACB system functional again. Much has been learned about what works and what does not work. Of the ACB installations that have failed or experienced damage, the underlying issues have been attributed to one of several potential failure modes that may not have been understood or adequately addressed during the design. The purpose of this paper is to share information on several recent ACB embankment armoring and spillway armoring failures, and to describe the specific failure modes associated with these incidents. Suggestions for incorporating design features to address these potential failure modes are also provided. This information is important for engineers to consider during their designs, and for regulators reviewing ACB armoring designs, so that future failures and unnecessary damage resulting in costly maintenance can be prevented

    Living God Pandeism: Evidential Support

    Get PDF
    Pandeism is the belief that God chose to wholly become our Universe, imposing principles at this Becoming that have fostered the lawful evolution of multifarious structures, including life and consciousness. This article describes and defends a particular form of pandeism: living God pandeism (LGP). On LGP, our Universe inherits all of God's unsurpassable attributes—reality, unity, consciousness, knowledge, intelligence, and effectiveness—and includes as much reality, conscious and unconscious, as is possible consistent with retaining those attributes. God and the Universe, together “God-and-Universe,” is also eternal into the future and the past. The article derives testable hypotheses from these claims and shows that the evidence to date confirms some of these while falsifying none. Theism cannot be tested in the same way

    Construction of Escherichia coli Strains for Conversion of Nitroacetophenones to ortho-Aminophenols

    No full text
    The predominant bacterial pathway for nitrobenzene (NB) degradation uses an NB nitroreductase and hydroxylaminobenzene (HAB) mutase to form the ring-fission substrate ortho-aminophenol. We tested the hypothesis that constructed strains might accumulate the aminophenols from nitroacetophenones and other nitroaromatic compounds. We constructed a recombinant plasmid carrying NB nitroreductase (nbzA) and HAB mutase A (habA) genes, both from Pseudomonas pseudoalcaligenes JS45, and expressed the enzymes in Escherichia coli JS995. IPTG (isopropyl-β-d-thiogalactopyranoside)-induced cells of strain JS995 rapidly and stoichiometrically converted NB to 2-aminophenol, 2-nitroacetophenone (2NAP) to 2-amino-3-hydroxyacetophenone (2AHAP), and 3-nitroacetophenone (3NAP) to 3-amino-2-hydroxyacetophenone (3AHAP). We constructed another recombinant plasmid containing the nitroreductase gene (nfs1) from Enterobacter cloacae and habA from strain JS45 and expressed the enzymes in E. coli JS996. Strain JS996 converted NB to 2-aminophenol, 2-nitrotoluene to 2-amino-3-methylphenol, 3-nitrotoluene to 2-amino-4-methylphenol, 4-nitrobiphenyl ether to 4-amino-5-phenoxyphenol, and 1-nitronaphthalene to 2-amino-1-naphthol. In larger-scale biotransformations catalyzed by strain JS995, 75% of the 2NAP transformed was converted to 2AHAP, whereas 3AHAP was produced stoichiometrically from 3NAP. The final yields of the aminophenols after extraction and recovery were >64%. The biocatalytic synthesis of ortho-aminophenols from nitroacetophenones suggests that strain JS995 may be useful in the biocatalytic production of a variety of substituted ortho-aminophenols from the corresponding nitroaromatic compounds.

    Bacterial Conversion of Hydroxylamino Aromatic Compounds by both Lyase and Mutase Enzymes Involves Intramolecular Transfer of Hydroxyl Groups

    No full text
    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups
    corecore