19 research outputs found

    HIV-1 Epidemic in the Caribbean Is Dominated by Subtype B

    Get PDF
    The molecular epidemiology of HIV-1 in the Caribbean has been described using partial genome sequencing; subtype B is the most common subtype in multiple countries. To expand our knowledge of this, nearly full genome amplification, sequencing and analysis was conducted.Virion RNA from sera collected in Haiti, Dominican Republic, Jamaica and Trinidad and Tobago were reverse transcribed, PCR amplified, sequenced and phylogenetically analyzed. Nearly full genomes were completed for 15 strains; partial pol was done for 67 strains. All but one of the 67 strains analyzed in pol were subtype B; the exception was a unique recombinant of subtypes B and C collected in the Dominican Republic. Of the nearly full genomes of 14 strains that were subtype B in pol, all were subtype B from one end of the genome to the other and not inter-subtype recombinants. Surprisingly, the Caribbean subtype B strains clustered significantly with each other and separate from subtype B from other parts of the pandemic.The more complete analysis of HIV-1 from 4 Caribbean countries confirms previous research using partial genome analysis that the predominant subtype in circulation was subtype B. The Caribbean strains are phylogenetically distinct from other subtype B strains although the biological meaning of this finding is unclear

    Significantly Longer Envelope V2 Loops Are Characteristic of Heterosexually Transmitted Subtype B HIV-1 in Trinidad

    Get PDF
    In Trinidad and the wider Caribbean, subtype B Human Immunodeficiency Virus-type 1 (HIV-1B) overwhelmingly accounts for HIV infection among heterosexuals; this contrasts with the association of HIV-1B with homosexual transmission and injecting drug use globally. The HIV envelope contains genetic determinants of cell tropism and evasion from immune attack. In this study we investigate the genetic properties of the env V1-C4 of HIV-1B soon after transmission to Trinidadian heterosexuals. This will reveal distinctive genetic features of the strains that cause the HIV-1B epidemic in Trinidad and generate insights to better understand their properties.Quasispecies sampling was performed on the env V1-C4 of HIV-1B strains soon after transmission to heterosexual Trinidadians in a cohort of seroconverters. Phylogenetic relationships were determined for these quasispecies and the length and number of asparagine (N) linked glycosylation sites (NLGS) in their variable loops compared to that for HIV-1B globally. Signature amino acids within the constant domains of the env V1-C4 were identified for heterosexually transmitted HIV-1B from Trinidad relative to HIV-1B globally. HIV-1B obtained from Trinidadian heterosexuals soon after seroconversion had significantly longer V2 loops with one more glycosylation site, shorter V3 loops and no significant difference in V1 or V4 when compared to HIV-1B obtained soon after seroconversion from infected individuals in the rest of the world. HIV-1B soon after seroconversion and during chronic infection of Trinidadians was not significantly different, suggesting that distinctly long V2 loops are characteristic of HIV-1B in Trinidad. A threonine deletion at position 319 (T319-) along with the substitutions R315K and S440R were found to be distinctly associated with HIV-1B from Trinidad compared to HIV-1B globally.This finding of distinctive genetic features that are characteristic of HIV-1B strains from Trinidad is consistent with the Trinidad epidemic being established by a founder strain or closely related founder strains of HIV-1B

    A comparative phase I study of combination, homologous subtype-C DNA, MVA, and Env gp140 protein/adjuvant HIV vaccines in two immunization regimes

    Get PDF
    There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant-aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders,  = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen

    Envelope-Specific Recognition Patterns of HIV Vaccine-Induced IgG Antibodies Are Linked to Immunogen Structure and Sequence

    Get PDF
    Background: A better understanding of the parameters influencing vaccine-induced IgG recognition of individual antigenic regions and their variants within the HIV Envelope protein (Env) can help to improve design of preventive HIV vaccines. Methods: Env-specific IgG responses were mapped in samples of the UKHVC003 Standard Group (UK003SG, n = 11 from UK) and TaMoVac01 (TMV01, n = 17 from Tanzania) HIV vaccine trials. Both trials consisted of three immunizations with DNA, followed by two boosts with recombinant Modified Vaccinia Virus Ankara (MVA), either mediating secretion of gp120 (UK003SG) or the presentation of cell membrane bound gp150 envelopes (TMV01) from infected cells, and an additional two boosts with 5 μg of CN54gp140 protein adjuvanted with glucopyranosyl lipid adjuvant (GLA). Env immunogen sequences in UK003SG were solely based on the clade C isolate CN54, whereas in TMV01 these were based on clades A, C, B, and CRF01AE. The peptide microarray included 8 globally representative Env sequences, CN54gp140 and the MVA-encoded Env immunogens from both trials, as well as additional peptide variants for hot spots of immune recognition. Results: After the second MVA boost, UK003SG vaccinees almost exclusively targeted linear, non-glycosylated antigenic regions located in the inter-gp120 interface. In contrast, TMV01 recipients most strongly targeted the V2 region and an immunodominant region in gp41. The V3 region was frequently targeted in both trials, with a higher recognition magnitude for diverse antigenic variants observed in the UK003SG (p < 0.0001). After boosting with CN54gp140/GLA, the overall response magnitude increased with a more comparable recognition pattern of antigenic regions and variants between the two trials. Recognition of most immunodominant regions within gp120 remained significantly stronger in UK003SG, whereas V2-region recognition was not boosted in either group. Conclusions: IgG recognition of linear antigenic Env regions differed between the two trials particularly after the second MVA boost. Structural features of the MVA-encoded immunogens, such as secreted, monomeric gp120 vs. membrane-anchored, functional gp150, and differences in prime-boost immunogen sequence variability most probably contributed to these differences. Prime-boosting with multivalent Env immunogens during TMV01 did not improve variant cross-recognition of immunodominant peptide variants in the V3 region

    Protocol for Nearly Full-Length Sequencing of HIV-1 RNA from Plasma

    Get PDF
    Nearly full-length genome sequencing of HIV-1 using peripheral blood mononuclear cells (PBMC) DNA as a template for PCR is now a relatively routine laboratory procedure. However, this has not been the case when using virion RNA as the template and this has made full genome analysis of circulating viruses difficult. Therefore, a well-developed procedure for sequencing of full-length HIV-1 RNA directly from plasma was needed. Plasma from U.S. donors representing a range of viral loads (VL) was used to develop the assay. RNA was extracted from plasma and reverse-transcribed. Two or three overlapping regions were PCR amplified to cover the entire viral genome and sequenced for verification. The success of the procedure was sensitive to VL but was routinely successful for VL greater than 105 and the rate declined in proportion to the VL. While the two-amplicon strategy had an advantage of increasing the possibility of amplifying a single species of HIV-1, the three-amplicon strategy was more successful in amplifying samples with low viral loads. This protocol provides a useful tool for molecular analysis to understand the HIV epidemic and pathogenesis, as well as diagnosis, therapy and future vaccine strategies

    In vitro and in vivo evaluation of organic anion-transporting polypeptide 2B1-mediated pharmacokinetic interactions by apple polyphenols

    Get PDF
    Organic anion-transporting polypeptide (OATP) 2B1 plays a critical role in the intestinal absorption of substrate drugs. Apple juice reportedly interacts with OATP2B1 substrate drugs. The purpose of this study was to investigate the effect of two apple polyphenols, phloretin and phloridzin, on OATP2B1-mediated substrate transport in vitro and to evaluate the effect of phloretin on rosuvastatin pharmacokinetics in rats. In vitro studies revealed that both polyphenols inhibited OATP2B1-mediated uptake of estrone-3-sulfate. Despite preincubation with phloretin and subsequent washing, the inhibitory effect was retained. Phloretin markedly decreased OATP2B1-mediated rosuvastatin uptake, with an IC50 value of 3.6 mu M. On coadministering rosuvastatin and phloretin in rats, the plasma concentration of rosuvastatin 10 min after oral administration was significantly lower than that in the vehicle group. The area under the plasma concentration-time curve of rosuvastatin was not significant, showing a tendency to decrease in the phloretin group when compared with the vehicle group. The in-situ rat intestinal loop study revealed the inhibitory effect of phloretin on rosuvastatin absorption. Phloretin has potent and long-lasting inhibitory effects on OATP2B1 in vitro. Phloretin may inhibit OATP2B1-mediated intestinal absorption of rosuvastatin; however, it failed to significantly impact the systemic exposure of rosuvastatin in rats

    Neighbour-joining phylogeny of HIV-1 quasispecies based on <i>env</i> V1–V4.

    No full text
    <p>(A) Phylogeny of quasispecies isolated from Argentinean MSM and (B) Phylogeny of quasispecies isolated from Trinidadian heterosexuals. The sequences were isolated from samples collected soon after seroconversion. Percentage intrapatient diversity is presented for each patient and * highlights the patient who is infected by distantly related strains.</p
    corecore