333 research outputs found

    Inclusive Quark Production in e+e−e^{+}e^{-}-Annihilation - A Path Integral Approach

    Get PDF
    The single-particle inclusive differential cross-section for a reaction a+b→c+Xa+b\to c+X is written as imaginary part of a correlation function in a forward scattering amplitude for a+b→a+ba+b\to a+b in a modified effective theory. In this modified theory the interaction Hamiltonian H~I\tilde H_I equals HIH_I of the original theory up to a certain time. Then there is a sign change and H~I\tilde H_I becomes nonlocal. This is worked out in detail for scalar field models and for QED plus the abelian gluon model. A suitable path integral for direct calculations of inclusive cross sections is presented.Comment: Latex, 5 pages, 2 figures, talk given at the QCD 00 Euroconference, Montpellier, 6-13 July 200

    Factorisation, Parton Entanglement and the Drell-Yan Process

    Full text link
    We discuss the angular distribution of the lepton pair in the Drell-Yan process, hadron+hadron -> \gamma^* X -> l^+ l^- X. This process gives information on the spin-density matrix \rho^{(q,\bar{q})} of the annihilating quark-antiquark pair in q+\bar{q} -> l^+ l^-. There is strong experimental evidence that even for unpolarised initial hadrons \rho^{(q,\bar{q})} is nontrivial, and therefore the quark-antiquark system is polarised. We discuss the possibilities of a general \rho^{(q,\bar{q})} -which could be entangled- and a factorising \rho^{(q,\bar{q})}. We argue that instantons may lead to a nontrivial \rho^{(q,\bar{q})} of the type indicated by experiments.Comment: 14 pages, 2 figures, comments and references added; to appear in EPJ

    On the phenomenology of a two-Higgs-doublet model with maximal CP symmetry at the LHC - synopsis and addendum

    Full text link
    Predictions for LHC physics are given for a two-Higgs-doublet model having four generalized CP symmetries. In this maximally-CP-symmetric model (MCPM) the first fermion family is, at tree level, uncoupled to the Higgs fields and thus massless. The second and third fermion families have a very symmetric coupling to the Higgs fields. But through the electroweak symmetry breaking a large mass hierarchy is generated between these fermion families. Thus, the fermion mass spectrum of the model presents a rough approximation to what is observed in Nature. In the MCPM the couplings of the Higgs bosons to the fermions are completely fixed. This allows us to present clear predictions for the production at the LHC and for the decays of the physical Higgs bosons. As salient feature we find rather large cross sections for Higgs-boson production via Drell-Yan type processes. In this paper we present a short outline of the model and extend a former study by the predictions at LHC for a center-of-mass energy of 7 TeV.Comment: 3 pages, 2 figure

    CP Violation in the General Two-Higgs-Doublet Model: a Geometric View

    Full text link
    We discuss the CP properties of the potential in the general Two-Higgs-Doublet Model (THDM). This is done in a concise way using real gauge invariant functions built from the scalar products of the doublet fields. The space of these invariant functions, parametrising the gauge orbits of the Higgs fields, is isomorphic to the forward light cone and its interior. CP transformations are shown to correspond to reflections in the space of the gauge invariant functions. We consider CP transformations where no mixing of the Higgs doublets is taken into account as well as the general case where the Higgs basis is not fixed. We present basis independent conditions for explicit CP violation which may be checked easily for any THDM potential. Conditions for spontaneous CP violation, that is CP violation through the vacuum expectation values of the Higgs fields, are also derived in a basis independent way.Comment: 19 pages, minor additions, minor typos corrected, results unchange

    Effective-Lagrangian approach to gamma gamma --> WW; II: Results and comparison with e+e- --> WW

    Full text link
    We present a study of anomalous electroweak gauge-boson couplings which can be measured in e+e- and gamma gamma collisions at a future linear collider like ILC. We consider the gauge-boson sector of a locally SU(2) x U(1) invariant effective Lagrangian with ten dimension-six operators added to the Lagrangian of the Standard Model. These operators induce anomalous three- and four-gauge-boson couplings and an anomalous gamma gamma H coupling. We calculate the reachable sensitivity for the measurement of the anomalous couplings in gamma gamma --> WW. We compare these results with the reachable precision in the reaction e+e- --> WW on the one hand and with the bounds that one can get from high-precision observables in Z decays on the other hand. We show that one needs both the e+e- and the gamma gamma modes at an ILC to constrain the largest possible number of anomalous couplings and that the Giga-Z mode offers the best sensitivity for certain anomalous couplings.Comment: 25 pages, 1 figure, 7 tables, comments, references and a table added; to appear in EPJ

    Stability and Symmetry Breaking in the General Two-Higgs-Doublet Model

    Get PDF
    A method is presented for the analysis of the scalar potential in the general Two-Higgs-Doublet Model. This allows us to give the conditions for the stability of the potential and for electroweak symmetry breaking in this model in a very concise way. These results are then applied to two different Higgs potentials in the literature, namely the MSSM and the Two-Higgs-Doublet potential proposed by Gunion at al. All known results for these models follow easily as special cases from the general results. In particular, in the potential of Gunion et al. we can clarify some interesting aspects of the model with the help of the proposed method.Comment: 20 pages, 3 figures, extended version, typos corrected, references adde

    Observing the Odderon: Tensor Meson Photoproduction

    Get PDF
    We calculate high-energy photoproduction of the tensor meson f2(1270)f_2(1270) by odderon and photon exchange in the reaction γ+p→f2(1270)+X\gamma + {\rm{p}} \to f_2(1270) + {\rm{X}}, where X is either the nucleon or the sum of the N(1520) and N(1535) baryon resonances. Odderon exchange dominates except at very small transverse momentum, and we find a cross section of about 20 nb at a centre-of-mass energy of 20 GeV. This result is compared with what is currently known experimentally about f2f_2 photoproduction. We conclude that odderon exchange is not ruled out by present data. On the contrary, an odderon-induced cross section of the above magnitude may help to explain a puzzling result observed by the E687 experiment.Comment: 19 pages, 11 figure

    Small-x Parton Distributions of Large Hadronic Targets

    Get PDF
    A simple and intuitive calculation, based on the semiclassical approximation, demonstrates how the large size of a hadronic target introduces a new perturbative scale into the process of small-x deep inelastic scattering. The above calculation, which is performed in the target rest frame, is compared to the McLerran-Venugopalan model for scattering off large nuclei, which has first highlighted this effect in the infinite momentum frame. It is shown that the two approaches, i.e., the rest frame based semiclassical calculation and the infinite momentum frame based McLerran-Venugopalan approach are quantitatively consistent.Comment: 10 pages, 3 figure

    The Missing Odderon

    Full text link
    In contrast to theoretical expectations, experimental results at sqrt(s)=200 GeV for the reaction gamma p --> pi0 X show no evidence for odderon exchange. The upper limit on the cross section is an order of magnitude smaller than the theoretical estimate. It is argued that chiral symmetry leads to a large suppression, taking the thoeretical estimates well below the data. Two additional arguments are presented which may decrease the theoretical estimate further. The calculations are more sensitive to the assumptions made in evaluating the hadronic scattering amplitude than in the processes considered previously and lattice gauge calculations indicate that the odderon intercept may be appreciably lower than usually assumed. These two latter effects are particularly relevant for the reactions gamma p --> f2(1270)X and gamma p --> a2(1320)X for which the data upper limits are also below the theoretical predictions, but not so dramatically as for gamma p --> pi0 X.Comment: 12 pages, 3 figure
    • 

    corecore