3 research outputs found

    Titanium Dioxide Thin Films for Environmental Applications

    Get PDF
    The environmental pollution and the rapid depletion of fossil fuel caused by the rapid increase in industrial production became serious problems for humans. These issues have inspired many researchers to found eco-friendly materials, which can degrade pollutants and produce green energy. Titanium dioxide (TiO2) thin films are one of the important and promising semiconductor materials for environmental and energy applications because of their unique optical and electronic properties. In this chapter, an overview of the background of TiO2 structure and the different methods of synthesis TiO2 thin films were carried out. The photocatalytic water treatment and the water split for H2 production by TiO2 thin films were investigated. The strong influence on photocatalytic and water split efficiency of TiO2 thin films by crystal structure, surface area, crystalline structure, average particle size and porosity were summarized

    Enhanced photoelectrochemical performance of TiO

    No full text
    In this paper, we report the photoelectrochemical performances of CdS nanoparticles (NPs) decorated TiO2 photoanodes. The TiO2 nanofiber arrays (NFAs) were fabricated into Titanium substrate by a hydrothermal method. Afterwards, the deposited TiO2 NFAs were decorated with CdS NPs by employing a successive ionic layer adsorption and reaction (SILAR) method. The obtained samples of CdS covered and uncovered TiO2 NFAs were characterized by X-ray diffraction, Scanning Electron Microscopy and UV-visible Diffuse Reflectance Spectroscopy. The size of the CdS nanoparticles increases with the number of SILAR cycles and leads to an additional broad absorption peak in the visible part of the spectrum. Consequently, the photo-electrochemical performance of the CdS decorated TiO2 was enhanced substantially resulting in a better electron-hole separation and transport. This enhancement has been discussed and assigned to a better sun light harvesting and an efficient charge transfer between the CdS nanoparticles and the TiO2 NFAs
    corecore