24 research outputs found

    A Stochastic Location-Allocation Model for Specialized Services in a Multihospital System

    Get PDF
    Rising costs, increasing demand, wasteful spending, and limited resources in the healthcare industry lead to an increasing pressure on hospital administrators to become as efficient as possible in all aspects of their operations including location-allocation. Some promising strategies for tackling these challenges are joining some hospitals to form multihospital systems (MHSs), specialization, and using the benefits of pooling resources. We develop a stochastic optimization model to determine the number, capacity, and location of hospitals in a MHS offering specialized services while they leverage benefits of pooling resources. The model minimizes the total cost borne by the MHS and its patients and incorporates patient service level, patient retention rates, and type of demand. Some computational analyses are carried out to gauge the benefits of optimally sharing resources for delivering specialized services across a subset of hospitals in the MHS against complete decentralization (CD) and full centralization (FC) policies

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Traffic Accident Spatial Simulation Modeling for Planning of Road Emergency Services

    No full text
    The appropriate locations of road emergency stations (RESs) can help to decrease the impact of traffic accidents that cause around 50 million injuries per year worldwide. In this research, the appropriateness of existing RESs in the Khuzestan province, Iran, was assessed using an integrated fuzzy analytical hierarchy process (FAHP) and geographic information system (GIS) approach. The data used in this research were collected from different sources, including the department of roads, the department of health, the statistics organization, forensics, police centers, the surveying and geological department, remotely-sensed and global positioning system (GPS) data of accident high crash zones. On the basis of previous studies and the requirements of the Ministry of Health and Medical Education, as well as the department of roads of Iran for the location of RESs, nine criteria and 19 sub-criteria were adopted, including population, safety, environmental indicators, compatible area in RES, incompatible area in RES, type of road, accident high crash zones, traffic level and performance radius. The FAHP yielded the criteria weights and the ideal locations for establishing RESs using GIS analysis and aggregation functions. The resulting map matched the known road accident and high crash zones very well. The results indicated that the current RES stations are not distributed appropriately along the major roads of the Khuzestan province, and a re-arrangement is suggested. The finding of the present study can help decision-makers and authorities to achieve sustainable road safety in the case study area

    A Hybrid Data Balancing Method for Classification of Imbalanced Training Data within Google Earth Engine: Case Studies from Mountainous Regions

    No full text
    Distribution of Land Cover (LC) classes is mostly imbalanced with some majority LC classes dominating against minority classes in mountainous areas. Although standard Machine Learning (ML) classifiers can achieve high accuracies for majority classes, they largely fail to provide reasonable accuracies for minority classes. This is mainly due to the class imbalance problem. In this study, a hybrid data balancing method, called the Partial Random Over-Sampling and Random Under-Sampling (PROSRUS), was proposed to resolve the class imbalance issue. Unlike most data balancing techniques which seek to fully balance datasets, PROSRUS uses a partial balancing approach with hundreds of fractions for majority and minority classes to balance datasets. For this, time-series of Landsat-8 and SRTM topographic data along with various spectral indices and topographic data were used over three mountainous sites within the Google Earth Engine (GEE) cloud platform. It was observed that PROSRUS had better performance than several other balancing methods and increased the accuracy of minority classes without a reduction in overall classification accuracy. Furthermore, adopting complementary information, particularly topographic data, considerably increased the accuracy of minority classes in mountainous areas. Finally, the obtained results from PROSRUS indicated that every imbalanced dataset requires a specific fraction(s) for addressing the class imbalance problem, because different datasets contain various characteristics

    Integrating the sequence dependent setup time open shop problem and preventive maintenance policies

    No full text
    In most industrial environments, it is usually considered that machines are accessible throughout the planning horizon, but in real situation, machines may be unavailable due to a scheduled preventive maintenance where the periods of unavailability are known in advance. The main idea of this paper is to consider different preventive maintenance policies on machines regarding open shop scheduling problem (OSSP) with sequence dependent setup times (SDST) using immune algorithm. The preventive maintenance (PM) policies are planned for maximizing availability of machines or keeping minimum level of reliability through the production horizon. The objective function of the paper is to minimize makespan. In total, the proposed algorithm extensively is compared with six adaptations of existing heuristic and meta-heuristic methods for the problem through data sets from benchmarks based on Taillard’s instances with some adjustments. The results show that the proposed algorithm outperforms other algorithms for this problem

    Traffic Accident Spatial Simulation Modeling for Planning of Road Emergency Services / Traffic Accident Spatial Simulation Modeling for Planning of Road Emergency Services

    No full text
    The appropriate locations of road emergency stations (RESs) can help to decrease the impact of traffic accidents that cause around 50 million injuries per year worldwide. In this research, the appropriateness of existing RESs in the Khuzestan province, Iran, was assessed using an integrated fuzzy analytical hierarchy process (FAHP) and geographic information system (GIS) approach. The data used in this research were collected from different sources, including the department of roads, the department of health, the statistics organization, forensics, police centers, the surveying and geological department, remotely-sensed and global positioning system (GPS) data of accident high crash zones. On the basis of previous studies and the requirements of the Ministry of Health and Medical Education, as well as the department of roads of Iran for the location of RESs, nine criteria and 19 sub-criteria were adopted, including population, safety, environmental indicators, compatible area in RES, incompatible area in RES, type of road, accident high crash zones, traffic level and performance radius. The FAHP yielded the criteria weights and the ideal locations for establishing RESs using GIS analysis and aggregation functions. The resulting map matched the known road accident and high crash zones very well. The results indicated that the current RES stations are not distributed appropriately along the major roads of the Khuzestan province, and a re-arrangement is suggested. The finding of the present study can help decision-makers and authorities to achieve sustainable road safety in the case study area.(VLID)445082

    A review of land use/land cover change mapping in the China-Central Asia-West Asia economic corridor countries

    No full text
    Large-scale projects, such as the construction of railways and highways, usually cause an extensive Land Use Land Cover Change (LULCC). The China-Central Asia-West Asia Economic Corridor (CCAWAEC), one key large-scale project of the Belt and Road Initiative (BRI), covers a region that is home to more than 1.6 billion people. Although numerous studies have been conducted on strategies and the economic potential of the Economic Corridor, reviewing LULCC mapping studies in this area has not been studied. This study provides a comprehensive review of the recent research progress and discusses the challenges in LULCC monitoring and driving factors identifying in the study area. The review will be helpful for the decision-making of sustainable development and construction in the Economic Corridor. To this end, 350 peer-reviewed journal and conference papers, as well as book chapters were analyzed based on 17 attributes, such as main driving factors of LULCC, data collection methods, classification algorithms, and accuracy assessment methods. It was observed that: (1) rapid urbanization, industrialization, population growth, and climate change have been recognized as major causes of LULCC in the study area; (2) LULCC has, directly and indirectly, caused several environmental issues, such as biodiversity loss, air pollution, water pollution, desertification, and land degradation; (3) there is a lack of well-annotated national land use data in the region; (4) there is a lack of reliable training and reference datasets to accurately study the long-term LULCC in most parts of the study area; and (5) several technical issues still require more attention from the scientific community. Finally, several recommendations were proposed to address the identified issues

    Land cover dataset of the China Central-Asia West-Asia Economic Corridor from 1993 to 2018

    No full text
    Abstract Land Cover (LC) maps offer vital knowledge for various studies, ranging from sustainable development to climate change. The China Central-Asia West-Asia Economic Corridor region, as a core component of the Belt and Road initiative program, has been experiencing some of the most severe LC change tragedies, such as the Aral Sea crisis and Lake Urmia shrinkage, in recent decades. Therefore, there is a high demand for producing a fine-resolution, spatially-explicit, and long-term LC dataset for this region. However, except China, such dataset for the rest of the region (Kyrgyzstan, Turkmenistan, Kazakhstan, Uzbekistan, Tajikistan, Turkey, and Iran) is currently lacking. Here, we constructed a historical set of six 30-m resolution LC maps between 1993 and 2018 at 5-year time intervals for the seven countries where nearly 200,000 Landsat scenes were classified into nine LC types within Google Earth Engine cloud computing platform. The generated LC maps displayed high accuracies. This publicly available dataset has the potential to be broadly applied in environmental policy and management

    RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine

    No full text
    Timely and accurate Land Cover (LC) information is required for various applications, such as climate change analysis and sustainable development. Although machine learning algorithms are most likely successful in LC mapping tasks, the class imbalance problem is known as a common challenge in this regard. This problem occurs during the training phase and reduces classification accuracy for infrequent and rare LC classes. To address this issue, this study proposes a new method by integrating random under-sampling of majority classes and an ensemble of Support Vector Machines, namely Random Under-sampling Ensemble of Support Vector Machines (RUESVMs). The performance of RUESVMs for LC classification was evaluated in Google Earth Engine (GEE) over two different case studies using Sentinel-2 time-series data and five well-known spectral indices, including the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI), and Normalized Difference Water Index (NDWI). The performance of RUESVMs was also compared with the traditional SVM and combination of SVM with three benchmark data balancing techniques namely the Random Over-Sampling (ROS), Random Under-Sampling (RUS), and Synthetic Minority Over-sampling Technique (SMOTE). It was observed that the proposed method considerably improved the accuracy of LC classification, especially for the minority classes. After adopting RUESVMs, the overall accuracy of the generated LC map increased by approximately 4.95 percentage points, and this amount for the geometric mean of producer’s accuracies was almost 3.75 percentage points, in comparison to the most accurate data balancing method (i.e., SVM-SMOTE). Regarding the geometric mean of users’ accuracies, RUESVMs also outperformed the SVM-SMOTE method with an average increase of 6.45 percentage points
    corecore