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Rising costs, increasing demand, wasteful spending, and limited resources in the healthcare industry lead to an increasing pressure
on hospital administrators to become as efficient as possible in all aspects of their operations including location-allocation. Some
promising strategies for tackling these challenges are joining some hospitals to formmultihospital systems (MHSs), specialization,
and using the benefits of pooling resources. We develop a stochastic optimization model to determine the number, capacity, and
location of hospitals in a MHS offering specialized services while they leverage benefits of pooling resources.Themodel minimizes
the total cost borne by the MHS and its patients and incorporates patient service level, patient retention rates, and type of demand.
Some computational analyses are carried out to gauge the benefits of optimally sharing resources for delivering specialized services
across a subset of hospitals in the MHS against complete decentralization (CD) and full centralization (FC) policies.

1. Introduction

The number of multihospital systems (MHSs) has increased
rapidly in recent years [1]. This development leads to a
number of opportunities and threats for MHS managers.
Nowadays, they are under increasing pressure to improve the
quality of service, decrease costs, and become as efficient as
possible in all aspects of their operations [2]. Rising costs,
increasing demand, wasteful spending, and limited resources
in the hospital industry reveal the necessity of paying more
attention to this subject [1, 3, 4]. Note that both public and
private expenditures on US healthcare are rising faster than
any other sectors. Healthcare spending in the US was more
than $2.8 trillion in 2012 [5]. This situation will be worse
in the next years; according to the study conducted by the
Bipartisan Policy Center, US healthcare spending will be
approximately $5 trillion by 2021 [6]. In addition, 16.9% of
GDP was spent on the healthcare in the US in 2012 [7] and
it has been projected to be 27% of GDP by 2040 [8]. These
rising expenditures can influence the economy and its various
sectors [9]. The upsetting fact is that more than half of the
US healthcare spending ($1.2 trillion of the $2.2 trillion in

2007) was wasteful. Consumers, government, and healthcare
organizations are responsible for such wastes [10].

Another problem facing the US healthcare system is
increasing demand. The Association of American Medical
Colleges (AAMC) has projected that the annual demand
for physician visits will increase by 53% from 2000 to 2020
[11]. The situation for the urgent demand will be even worse
because there has recently been a noticeable decrease in
the number of emergency departments. Demand for the
specialized services is also increasing in the US. For example,
based on OECD report, the numbers of Magnetic Resonance
Imaging (MRI) tests per capita were highest in the US in
2013 [12]. An aging population also causes an increase in
the demand of the health services where the 85 and older
population is projected to increase from 5.4 million in 2008
to 19 million by 2050 in the US [13].

Another problem is limited resources. Inadequate re-
sources are not limited to equipment and facilities. Further-
more, the healthcare systems are facing insufficient treatment
staff. It has been projected that in 2020, deficiencies in the
practicing nurses of the US will be at least 400,000 more than
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today and vacancy rates for the registered nurses (RN) will
increase from 7% in 2005 to 29% by 2020 (nearly 1 million
lack) [14].

In the light of the above, the hospital administrators have
practically no other choice except to constantly try to become
as efficient as possible in all aspects of their operations
including location-allocation. Some promising strategies for
tackling these challenges are joining some hospitals to form
MHSs, specialization, and using the benefits of pooling
resources in such systems. There are compelling reasons to
apply these strategies. MHSs admit that they have a variety
of opportunities to attain cost savings from system-wide
economies of scale [15]. In addition, Christensen et al. indi-
cated that the only industry where factories (hospitals) are
not specialized and attempt to offer everything to everybody
is the healthcare. They revealed that setting up specialized
hospitals has significant opportunity to decrease cost for the
hospitalizations by 15–20% [16]. This approach can lead to a
decrease of the cost rather than providing these services at
all hospitals. For example, Narayana Hrudayalaya’s Bangalore
Cardiac Care Unit (CCU) which provides specialized cardiac
surgery services was set up for admitting significantly a
large number of patients. Since surgeons receive fixed salary
(instead of per operation) in the unit, hospital cost has
dropped by increasing the number of operations and using
the benefits of economies of scale [17]. As stated above, the
third strategy for the efficient use of resources and reducing
the costs is to utilize the benefits of pooling resources in
the designedMHS. Sharing resources for specialized services
(e.g.,MRI, transplants, CT scans, and neonatal intensive care)
due to the expensive cost of setting up new facilities is
more crucial. Therefore, in this paper for proper utiliza-
tion of the medical capacity in MHSs, we adopt all of the
three mentioned strategies and intend to restrict offering of
specialized services to a subset of hospitals instead of all
hospitals of the network. In suchMHSs, expensive equipment
could be provided in one or more of the larger hospitals.
An example of resource sharing for specialized services
in MHSs is Northland Healthcare. This network involves
25 hospitals and has enabled opportunity of sharing some
services such as MRI across 11 hospitals [18]. While applying
shared resources policy has some advantages, it may result
in longer travel distances for a patient to access the service.
Therefore, the research described in this paper takes into
account accessibility and service level as well as financial
aspects of the problem.

In spite of the potential benefits of resource sharing
in MHS, there has been limited research on this field.
This paper considers locating and allocating of specialized
services in a MHS. Specifically, we develop a mixed integer
nonlinear stochastic optimization model to determine how
many and which locations in a MHS should be set up for
offering specialized service, the capacity levels of hospitals,
and directions for which hospitals should handle demand of
each district in the system. The model minimizes per period
total cost borne by the MHS and its patients (i.e., by fixed
cost of setting up locations, variable cost of maintaining the
capacity across the sites, diversion cost of diverting patients
demand to another location in the MHS, penalty cost of not

being able to satisfy patients demand at a location, treatment
cost relatedwithmet demand, transportation cost of traveling
from a district to a location, and lodging costs related to
the travel and hotel lodging of patient’s family members who
go with the patient to a given hospital) and incorporates
patient service levels at each site and overall system, type of
demand (urgent or nonurgent), and patient retention rates by
willingness of patient to travel from a district to a location.

This paper is organized as follows. The following section
discusses healthcare location-allocation and capacity plan-
ning literature relevant to our research. Section 3 develops a
stochastic optimization model to determine the number,
capacity, and location of hospitals in a MHS for offering
specialized services. Section 4 describes experimental design.
Section 5 details and discusses the results. Last, concluding
remarks and directions for future research are provided in
Section 6.

2. Literature Review

The research literature on facility location-allocation is vast.
Daskin and Dean conducted an extensive review on facil-
ity location models in the healthcare field [19]. Location-
allocation models can aid the planners to determine the
number and location of facilities from which services can be
provided as well as their capacities. Each of the studies based
on its purpose has taken into account several factors such
as social, geographical, financial, and political considerations
[20–23]. Some studies have assumed geographical consid-
eration as a most significant factor in the utilization of the
health services. Most of these models have been concerned
with the traveling cost and supposed that patients always
patronize the nearest location to their residence [24], but
most of the times, other related parameters such as types
of services, quality, or adequacy influence the attraction
of a hospital [25, 26]. Some researchers believe that the
key characteristic in locating healthcare facilities is their
multiobjective nature [27]. Using multiobjective modeling,
one can take several factors into account in the modeling.
For instance, Mitropoulos et al. developed a biobjective
model and considered fair distribution of facilities among
dispersed population and minimization of distance from
patient’s home to hospitals as the objectives of themodel [24].
Other researchers considered the problem as a multicriteria
decision making problem and tried to take into account
several criteria by imposing suitable constraints [28].

Several studies concentrated on the advantages of spe-
cialization. They concluded that specialized care units can
raise the number of patients, decrease costs, and enhance
quality [29–34]. Phibbs et al. showed how mortality rates
in neonatal intensive care units reduce as the number of
the procedures increases [29]. Ketabi concluded that service
level in CCUs is affected by human resources, population
index, and regional concern [30]. Côté et al. developed an
optimization model to locate traumatic brain injury (TBI)
treatment units and provided available and accessible special-
ized services to qualified veterans under budget constraints.
They examined the cost and expected service implications
for a range of TBI treatment unit location options [31]. In
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another recent study, Syam and Côté showed that the degree
of centralization of services, geographic density of the patient
population, and retention rates are the decisive factors in the
specialized services location-allocation modeling [32]. Later,
they developed a comprehensive model to minimize the total
cost under common resource constrains at each location and
incorporated acuity level, retention rates, target service level,
and overloading penalty cost in the model [33].

Despite the positive aspects of the model [33], they
assumed that the demand over the time is fixed. Nevertheless,
Harper and Shahani stated that the demand function is often
dependent on time and distance and stochastic traveling
times differ from patient to patient. Therefore, applying a
deterministic approach may underestimate capacities of
resources [35]. For this reason, Harper et al. developed a
discrete-event location-allocation simulationmodel and con-
sidered demand as a function of time. The simulation model
determined the facility that patients must refer to and mode
of transportation [36]. Demand for some services may be
seasonal, such as elderly care through the winter months
or pediatric services over the school holidays. Ndiaye and
Alfares focused on locating public services for nomadic pop-
ulation groups. He formulated a binary integer programming
model to determine the optimal number and locations of pri-
mary health units for satisfying a seasonally varying demand
[37]. Ndiaye and Alfares conducted a statistical technique to
estimate county based demand for some healthcare services.
They developed an optimization model to determine the
location and number of new Community Health Centers
(CHCs) in a geographical network.They concluded that opti-
mizing the overall network can result in 20% improvement in
considered measures [37].

Several studies concentrated on the benefits of MHSs
[15, 34, 38, 39]. MHSs obtain significant opportunities to
attain cost savings from system-wide economies of scale.
Based on most of the researches, the most important action
step of the MHSs to be sustainable and highly effective in the
future is to specify the suitable balance between centralized
and decentralized elements of the system [15]. According to
[2], the integrative healthcare models taking into account
location, size, and service mix acrossMHSs would be helpful.
Mahar et al. developed an optimization model to evaluate
how MHSs can use benefits of pooling resources in location-
allocation models. They considered cost and service level in
the model and concluded MHSs can better use resources by
delivering service across fewer locations [34]. The research
offers that models such as ours that share specialized hospital
operations in a MHS may not only leverage economies of
scale to decrease cost but also result in an increase in actual
and perceived quality of service. Increasing in the number
of patients for a specialized operation leads medical staffs
to build their cumulative experience in administering the
service and this can enhance the quality of service.

The original study that this work extends is based on an
increasing need for improving the efficiency and effectiveness
of delivering specialized services at a MHS [34]. We assume
normally distributed stationary demand at each location.
The specific improvements to make the proposed model
more realistic in comparison with the model in [34] are

as follows: we consider a cluster of patient demand areas
(as the origin of demand) expected to be satisfied by a
hospital is labeled as a “district.”Therefore, the transportation
costs are related to the cost of traveling from district to
hospital. However, the hospitals could divert patient demand
to another location in the network and incur diversion
cost. Furthermore, we incorporate patient retention rates,
treatment cost, and lodging cost in the model.

3. A Model

The purpose of the periodic model presented here is to
develop a mixed integer nonlinear stochastic optimization
model to determine how many and which existing hospitals
in aMHS should be set up for specialized service, the capacity
levels, and directions for which hospitals should provide
specialized service forwhich districts in the systemandwhich
type of patients. This model includes two primary criteria:
(1) the MHS’s cost of providing specialized service and (2)
the service level at each site and the overall system. It also
minimizes the total cost borne by the MHS and its patients
and incorporates patient service level at each site and overall
system, type of demand, and retention rates.

The subscripts in the model are as follows:

ℎ: hospital location index;
𝑘: specialized services patient district index;
𝑖: retention rate index.

We consider a general hospital network with 𝐻 hospital
locations. Subscript ℎ identifies potential locations for offer-
ing specialized capacity. Probably, not all of the hospitals will
be prepared to deliver specialized services due to high fixed
operating costs or limited medical personnel resources. For
subscript 𝑘, “district” is the term for separate geographical
units such as counties, ZIP codes, or neighborhoods. With
subscript 𝑖, “retention rate” is the term for the proportion of
potential patients for specialized services that are willing to
travel from a district to a hospital. The retention rate assists
inmodeling the accessibility to a hospital by considering how
distance to a hospitalmay impact on thewillingness of patient
to travel to that hospital. For example, the number of patients
looking for care services may be decreased as the distance to
a hospital increases.

We presume normally distributed stationary demand for
the specialized service at each district 𝑘. In themodel, patient
demand according to its type can be classified as urgent
and nonurgent. We use the term “urgent” to refer to the
emergency (nonflexible) demand where the procedure must
be dealt with immediately and use the term “nonurgent” to
refer to the nonemergency (flexible) demand that may be
postponed or scheduled ahead. In the model, the demand
in each district based on retention rate is allocated to the
hospitals which cause transportation cost. This cost may
differ according to the type of the demand. The cost of trav-
eling the patients from district 𝑘 to hospital ℎ for nonurgent
demand (𝑇𝑛𝑘ℎ) will tend to be slightly lower than for that of
urgent demand (𝑇𝑠𝑘ℎ) since patientswith urgent demandmay
choose more expensive modes of transportation.
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As we noted above, hospitals face the demand of the
districts. A hospital may send a patient to other hospital
locations in the network and cause some cost (to the hospital
and patient satisfaction and well-being). This cost may also
differ according to the type of the demand. Let ℎ, ℎ󸀠 indicate
subscripts ranging from 1 to 𝐻; the cost of diverting a
patient with nonurgent demand from hospital ℎ to hospital
ℎ
󸀠
(𝐷𝑛ℎℎ󸀠) will tend to be much lower than for that of urgent

demand (𝐷𝑠ℎℎ󸀠). When (𝐷𝑠ℎℎ󸀠) is quite high, offering the
service at more hospitals would be a reasonable choice.

Let 𝑦ℎ be a binary decision variable signifying if hospital
ℎ is set up for delivering the specialized service or not, and let
𝑐ℎ be the variable capacity level at the location ℎ each period.
Moreover, let 𝑢󸀠

𝑘ℎ𝑖
and 𝑒󸀠
𝑘ℎ𝑖

be the binary decision variables
indicating whether or not district 𝑘’s urgent and nonurgent
demand is allocated to location ℎ with retention rate 𝑖,
respectively, and let 𝑢ℎℎ󸀠 and 𝑒ℎℎ󸀠 denote the fraction of urgent
and nonurgent demand that hospital ℎ󸀠 satisfies for hospital
ℎ (i.e., by sending patients from hospital ℎ to hospital ℎ󸀠 for
the service), respectively. Actually, by centralizing scheduling
activities in a MHS, a hospital in the system can allocate
some of its demand for the specialized services. For example,
by centralizing scheduling an appointment for a specialized
procedure, the procedure can be routed to one of the hospitals
in the network. Furthermore, when the closest hospital faces a
lack of medical personnel and/or room/bed or because of the
complexity of the cases, ambulance diversion can be applied
to divert patients to another facility in the network. One
study estimated that, in 2003, about 500,000 ambulances (an
average of about one ambulance every minute) were diverted
from their initial hospital destination [40].

The following model allocates the urgent and nonurgent
demand and service capacity (staff, equipment, etc.) to hos-
pitals where per period total cost (i.e., by fixed cost of setting
up locations, variable cost of maintaining capacity, diversion
cost of diverting patient demand to another location in the
MHS, penalty cost of not being able to satisfy patient demand
at a location, treatment cost associated with met demand,
transportation cost of traveling from a district to a location,
lodging costs related to the travel, and hotel lodging of
patient’s family members who go with the patient to a given
hospital) is minimized while meeting target service level
and ensuring the retention rate applied corresponds to the
distance between the district and the hospital. To make the
model more tangible, we first predefine the model’s decision
variables, system parameters, and quantities which can be
described in terms of the decision variables.

3.1. Model Variables. Themodel variables are as follows:

𝑐ℎ = variable specialized capacity level at location ℎ
each period;
𝑒
󸀠

𝑘ℎ𝑖
= 1 if district 𝑘’s nonurgent demand is allocated

to location ℎ with retention rate 𝑖, 0 otherwise;
𝑒ℎℎ󸀠 = the fraction of location ℎ’s nonurgent demand
allocated to location ℎ󸀠;
𝑢
󸀠

𝑘ℎ𝑖
= 1 if district 𝑘’s urgent demand is allocated to

location ℎ with retention rate 𝑖, 0 otherwise;

𝑢ℎℎ󸀠 = the fraction of location ℎ’s urgent demand
allocated to location ℎ󸀠;
𝑦ℎ = 1 if location ℎ is set up for offering the special-
ized service, 0 otherwise.

3.2. Model Parameters. Themodel parameters are as follows:

𝜇𝑛
󸀠

𝑘
= expected nonurgent demand for specialized

service at district 𝑘 per period;
𝜇𝑠
󸀠

𝑘
= expected urgent demand for specialized service

at district 𝑘 per period;
𝜎𝑛
󸀠

𝑘
= expected deviation of nonurgent demand for

specialized service per period at district 𝑘;
𝜎𝑠
󸀠

𝑘
= expected deviation of urgent demand for

specialized service per period at district 𝑘;
𝐻 = number of hospitals in the system;
𝐾 = number of districts in the system;
𝐼 = number of different retention categories in the
system;
𝑝ℎ = penalty cost associated with per unit of not
satisfied demand at location ℎ per period;
𝐹ℎ = fixed cost of setting up location ℎ for delivering
specialized service per period;
𝑓ℎ = variable cost per unit of variable capacity at
location ℎ per period;
𝑈𝑐ℎ = upper bound of the capacity if positioned at
location ℎ;
𝑇ℎ = treatment cost associated with per unit of
satisfied demand at location ℎ;
𝐿ℎ = average lodging cost per day for patient family at
location ℎ;
𝑔ℎ = average days of staying per patient at location ℎ;
𝑑ℎℎ󸀠 = average distance in miles between location ℎ
and location ℎ󸀠;
𝑑
󸀠

𝑘ℎ
= average distance in miles between district 𝑘 and

location ℎ;
𝑇𝑛𝑘ℎ = average transportation cost per mile between
district 𝑘 and location ℎ for nonurgent demand;
𝑇𝑠𝑘ℎ = average transportation cost per mile between
district 𝑘 and location ℎ for urgent demand;
𝐷𝑛ℎℎ󸀠 = average cost per unit of diverting nonurgent
demand from location ℎ to location ℎ󸀠;
𝐷𝑠ℎℎ󸀠 = average cost per unit of diverting urgent
demand from location ℎ to location ℎ󸀠;
𝑈𝑠𝑖 = upper bound in miles of the 𝑖th retention rate
for an urgent demand;
𝑈𝑛𝑖 = upper bound in miles of the 𝑖th retention rate
for a nonurgent demand;
𝐿𝑠𝑖 = lower bound inmiles of the 𝑖th retention rate for
an urgent demand;
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𝐿𝑛𝑖 = lower bound in miles of the 𝑖th retention rate
for a nonurgent demand;
𝛼𝑚 = minimum fraction of location ℎ’s demand that
is met;
𝛼system = minimum fraction of overall demand of the
system that is met;
𝑅𝑠
󸀠

𝑘ℎ𝑖
= proportion of urgent demand from district 𝑘

retained at location ℎ for retention rate 𝑖;
𝑅𝑛
󸀠

𝑘ℎ𝑖
= proportion of nonurgent demand from dis-

trict 𝑘 retained at location ℎ for retention rate 𝑖.

3.3. Quantities Being a Function of theDecisionVariables. The
decision variables are as follows:

𝜇𝑠ℎ = expected urgent demand for specialized service
at location ℎ per period (after district’s demand
allocation);
𝜇𝑛ℎ = expected nonurgent demand for specialized
service at location ℎ per period (after district’s
demand allocation),

𝜇𝑠ℎ =

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝜇𝑠
󸀠

𝑘
⋅ 𝑅𝑠
󸀠

𝑘ℎ𝑖
⋅ 𝑢
󸀠

𝑘ℎ𝑖
,

𝜇𝑛ℎ =

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝜇𝑛
󸀠

𝑘
⋅ 𝑅𝑛
󸀠

𝑘ℎ𝑖
⋅ 𝑒
󸀠

𝑘ℎ𝑖
;

(1)

𝜇ℎ = expected demand for specialized service at loca-
tion ℎ per period (after allocation between locations),

𝜇ℎ =

𝐻

∑

ℎ󸀠=1

(𝜇𝑠ℎ󸀠 ⋅ 𝑢ℎ󸀠ℎ) + (𝜇𝑛ℎ󸀠 ⋅ 𝑒ℎ󸀠ℎ) ; (2)

𝜎𝑠ℎ = standard deviation of urgent demand for spe-
cialized service per period at location ℎ;
𝜎𝑛ℎ = standard deviation of nonurgent demand for
specialized service per period at location ℎ,

𝜎𝑠ℎ = √(

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝜎𝑠󸀠
𝑘
⋅ 𝑅𝑠󸀠
𝑘ℎ𝑖
⋅ 𝑢󸀠
𝑘ℎ𝑖
)

2

,

𝜎𝑛ℎ = √(

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝜎𝑛󸀠
𝑘
⋅ 𝑅𝑛󸀠
𝑘ℎ𝑖
⋅ 𝑒󸀠
𝑘ℎ𝑖
)

2

;

(3)

𝜎ℎ = standard deviation of demand for specialized
service per period at location ℎ,

𝜎ℎ = √

𝐻

∑

ℎ󸀠=1

(𝜇𝑠ℎ󸀠 ⋅ 𝑢ℎ󸀠ℎ)
2
+ (𝜇𝑛ℎ󸀠 ⋅ 𝑒ℎ󸀠ℎ)

2
; (4)

𝑅(𝑧ℎ) = the unit normal right-tail linear loss func-
tions,

𝑅 (𝑧ℎ) = ∫

∞

𝑧(ℎ)

(𝑤 − 𝑧ℎ) ⋅
1

√2𝜋
⋅ 𝑒
−𝑤
2
/2
⋅ 𝑑𝑤

𝜑 (𝑧ℎ) = 1 − 𝑅 (𝑧ℎ)

(5)

or

𝑅 (𝑧ℎ) =
1

√2𝜋
⋅ exp(

−𝑧
2

ℎ

2
) −

𝑧ℎ

2
+
𝑧ℎ

2
⋅ erf (

𝑧ℎ

√2
) , (6)

where

𝑧ℎ =
(𝑐ℎ − 𝜇ℎ)

𝜎ℎ

. (7)

In order to estimate error function erf(𝑦), we use the
following approximation provided by Winitzki [41]:

erf (𝑦) ≈
𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

⋅ √1 − exp(−𝑦2
4/𝜋 + 𝑏𝑦

2

1 + 𝑏𝑦2
);

𝑏 =
8 (𝜋 − 3)

3𝜋 ⋅ (4 − 𝜋)
.

(8)

3.4. Model Formulation. Consider the following:

(P) Mininmize
𝐻

∑

ℎ=1

𝐹ℎ ⋅ 𝑦ℎ +

𝐻

∑

ℎ=1

𝑓ℎ ⋅ 𝑐ℎ +

𝐻

∑

ℎ=1

𝑝ℎ ⋅ 𝑅 (𝑧ℎ) ⋅ 𝜎ℎ +

𝐻

∑

ℎ=1

(𝜇ℎ − 𝑅 (𝑧ℎ) ⋅ 𝜎ℎ) ⋅ 𝑉ℎ

+

𝐻

∑

ℎ=1

(𝜇ℎ − 𝑅 (𝑧ℎ) ⋅ 𝜎ℎ) ⋅ 𝑔ℎ ⋅ 𝐿ℎ +

𝐻

∑

ℎ=1

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝜇𝑠
󸀠

𝑘
⋅ 𝑅𝑠
󸀠

𝑘ℎ𝑖
⋅ 𝑢
󸀠

𝑘ℎ𝑖
⋅ 𝑑
󸀠

𝑘ℎ
⋅ 𝑇𝑠𝑘ℎ

+

𝐻

∑

ℎ=1

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝜇𝑛
󸀠

𝑘
⋅ 𝑅𝑛
󸀠

𝑘ℎ𝑖
⋅ 𝑒
󸀠

𝑘ℎ𝑖
⋅ 𝑑
󸀠

𝑘ℎ
⋅ 𝑇𝑛𝑘ℎ +

𝐻

∑

ℎ=1

𝐻

∑

ℎ󸀠=1

𝜇𝑠ℎ ⋅ 𝑢ℎℎ󸀠 ⋅ 𝑑ℎℎ󸀠 ⋅ 𝐷𝑠ℎℎ󸀠

+

𝐻

∑

ℎ=1

𝐻

∑

ℎ󸀠=1

𝜇𝑛ℎ ⋅ 𝑒ℎℎ󸀠 ⋅ 𝑑ℎℎ󸀠 ⋅ 𝐷𝑛ℎℎ󸀠

(9)
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s.t.
𝐼

∑

𝑖=1

𝐾

∑

𝑘=1

𝑢
󸀠

𝑘ℎ𝑖
= 1, ℎ = 1, 2, . . . , 𝐻 (10)

𝐼

∑

𝑖=1

𝐾

∑

𝑘=1

𝑒
󸀠

𝑘ℎ𝑖
= 1, ℎ = 1, 2, . . . , 𝐻 (11)

𝑢
󸀠

𝑘ℎ𝑖
≤ 𝑦ℎ, 𝑘 = 1, 2, . . . , 𝐾; ℎ = 1, 2, . . . , 𝐻; 𝑖 = 1, 2, . . . , 𝐼 (12)

𝑒
󸀠

𝑘ℎ𝑖
≤ 𝑦ℎ, 𝑘 = 1, 2, . . . , 𝐾; ℎ = 1, 2, . . . , 𝐻; 𝑖 = 1, 2, . . . , 𝐼 (13)

𝐻

∑

ℎ󸀠=1

𝑢ℎℎ󸀠 = 𝑦ℎ, ℎ = 1, 2, . . . , 𝐻 (14)

𝐻

∑

ℎ󸀠=1

𝑒ℎℎ󸀠 = 𝑦ℎ, ℎ = 1, 2, . . . , 𝐻 (15)

𝑢ℎℎ󸀠 ≤ 𝑦ℎ󸀠 , ℎ, ℎ
󸀠
= 1, 2, . . . , 𝐻 (16)

𝑒ℎℎ󸀠 ≤ 𝑦ℎ󸀠 , ℎ, ℎ
󸀠
= 1, 2, . . . , 𝐻 (17)

𝑐ℎ ≥ 𝜇ℎ, ℎ = 1, 2, . . . , 𝐻 (18)

𝑐ℎ ≤ 𝑦ℎ ⋅ 𝑈𝑐ℎ, ℎ = 1, 2, . . . , 𝐻 (19)

𝜑 (𝑧ℎ) ≥ 𝑦ℎ ⋅ 𝛼ℎ, ℎ = 1, 2, . . . , 𝐻 (20)

1 − (
∑
𝐻

ℎ=1
𝑅 (𝑧ℎ) ⋅ 𝜎ℎ

∑
𝐻

ℎ=1
𝜇ℎ

) ≥ 𝛼system (21)

(𝑑
󸀠

𝑘ℎ
− 𝑈𝑠𝑖) ⋅ 𝑒

󸀠

𝑘ℎ𝑖
≤ 0, 𝑘 = 1, 2, . . . , 𝐾; ℎ = 1, 2, . . . , 𝐻; 𝑖 = 1, 2, . . . , 𝐼 (22)

(𝑑
󸀠

𝑘ℎ
− 𝑈𝑛𝑖) ⋅ 𝑢

󸀠

𝑘ℎ𝑖
≤ 0, 𝑘 = 1, 2, . . . , 𝐾; ℎ = 1, 2, . . . , 𝐻; 𝑖 = 1, 2, . . . , 𝐼 (23)

(𝑑
󸀠

𝑘ℎ
− 𝐿𝑠𝑖) ⋅ 𝑒

󸀠

𝑘ℎ𝑖
≥ 0, 𝑘 = 1, 2, . . . , 𝐾; ℎ = 1, 2, . . . , 𝐻; 𝑖 = 1, 2, . . . , 𝐼 (24)

(𝑑
󸀠

𝑘ℎ
− 𝐿𝑠𝑖) ⋅ 𝑒

󸀠

𝑘ℎ𝑖
≥ 0, 𝑘 = 1, 2, . . . , 𝐾; ℎ = 1, 2, . . . , 𝐻; 𝑖 = 1, 2, . . . , 𝐼 (25)

0 ≤ 𝑒ℎℎ󸀠 ≤ 1, ℎ, ℎ
󸀠
= 1, 2, . . . , 𝐻 (26)

0 ≤ 𝑢ℎℎ󸀠 ≤ 1, ℎ, ℎ
󸀠
= 1, 2, . . . , 𝐻 (27)

𝑦ℎ, 𝑒
󸀠

𝑘ℎ𝑖
, 𝑢
󸀠

𝑘ℎ𝑖
∈ {0.1} , 𝑘 = 1, 2, . . . , 𝐾; ℎ = 1, 2, . . . , 𝐻; 𝑖 = 1, 2, . . . , 𝐼. (28)

The objective function (9) minimizes the total expected
cost for theMHS.Thefirst two terms in the objective function
signify the fixed cost of setting up locations for delivering
the specialized services and variable cost associated with
maintaining the capacity across the sites. The third term
represents the penalty cost of not being able to satisfy demand
at a location in the current period.The fourth and fifth terms
represent the treatment cost associated with met demand
and lodging costs of family members. The sixth and seventh
terms show the transportation cost of traveling patients with
urgent and nonurgent demand from a district to a location.
Terms 8 and 9 represent diversion cost of rerouting patients
with urgent and nonurgent demand to another location in

the MHS. Since there are the loss function and fractional
division of decision variables in terms 3, 4, and 5, the objective
function is nonlinear. The nonlinear term 𝑅(𝑧ℎ) ⋅ 𝜎ℎ denotes
the expected units of not satisfied demand at location ℎ.

Constraints (10) and (11) ensure that the urgent and
nonurgent demand in each district is assigned to exactly
one location with a single retention rate. Constraints (12)
and (13) put capacity at a site if any urgent or nonurgent
demand from a district with the corresponding retention rate
is allocated to that site. Constraints (14) and (15) guarantee
that all of site ℎ’s demand is assigned to a location if
any urgent or nonurgent demand is allocated to that site.
Constraints (16) and (17) put capacity at a site if any urgent
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or nonurgent demand from a location is allocated to that
site. Constraints (18) guarantee that variable capacity at any
site ℎ is enough to satisfy expected demand at the site, so
𝑧ℎ ≥ 0. Constraints (19) restrict capacity at site ℎ to either
0 if the site is not set up to offer the service or 𝑈𝑐ℎ.The 𝑈𝑐ℎ
value may be bounded by staff or equipment capacity and
size and space of the location and so forth. Constraints (20)
and (21) guarantee minimum service levels at each location
and overall network. Constraints (20) guarantee that site ℎ’s
chance for handling its demand in each period is at least
(100𝛼ℎ)% if site ℎ is set up to offer the specialized service and
constraint (21) guarantees that at least 𝛼system% of the total
demand is expected to be satisfied across all locations in each
period. Constraints (22) to (25) identify the lower and upper
bounds for each retention rate category. Constraints (26) and
(27) guarantee that the fractional allocations of urgent and
nonurgent demand lie between 0 and 1. Constraints (28)
necessitate that the specialized capacity is either positioned
at a site (𝑦ℎ = 1) or not (𝑦ℎ = 0); district 𝑘’s urgent demand is
either allocated to location ℎ with retention rate 𝑖 (𝑢󸀠

𝑘ℎ𝑖
= 1)

or not (𝑢󸀠
𝑘ℎ𝑖

= 0); district 𝑘’s nonurgent demand is either
allocated to location ℎ with retention rate 𝑖 (𝑒󸀠

𝑘ℎ𝑖
= 1) or not

(𝑒
󸀠

𝑘ℎ𝑖
= 0).

Problem (P) is a mixed integer nonlinear optimization
problem (MINLP) with nonlinear objective function subject
to nonlinear constraints (i.e., (20) and (21)) and integer
decision variables (𝑦ℎ, 𝑒

󸀠

𝑘ℎ𝑖
, 𝑢󸀠
𝑘ℎ𝑖
). It is necessary to note that in

general, a 0/1 integer programming problem is NP-complete
[42].Therefore, themodel is difficult to solve.There aremany
binary variables of the types 𝑒󸀠

𝑘ℎ𝑖
and 𝑢󸀠

𝑘ℎ𝑖
in the model. This

feature makes a major obstacle to implementation. As even
for medium-sized problems, solving models coded in the
GAMS (http://www.gams.com/) needs many hours. In order
to overcome these barriers, we precalculate the retention rates
that potentially apply between districts and locations and
replace 𝑒󸀠

𝑘ℎ𝑖
and 𝑢󸀠

𝑘ℎ𝑖
variables altogether with 𝑒󸀠

𝑘ℎ
and 𝑢󸀠

𝑘ℎ
,

respectively. Now, by imposing retention rates in this manner
we can eliminate constraints (22) to (25) and redesign the
model. This artifice results in reduction in the significant
number of binary variables and constraints.This in turn leads
to reduction in the computing times.

Similar to [34], we let 𝑧ℎ differ across the hospitals for
relaxing the balance assumption and allowing patient service
levels differ by site. In the next section, some computational
analyses are carried out to guarantee that the analytic total
cost gives rational results and gauge the benefit of optimally
sharing resources for offering the specialized services across a
subset of hospitals in the MHS against two alternate (CD and
FC) policies: (1) locating the service at all of the sites where
each of them handles its own demand and (2) offering the
service at one site to satisfy all of the network demands.

4. Experimental Design

When we want to locate the specialized services in a MHS,
a range of different settings happen in practice. For some
services, the main cost is the cost of purchasing the expen-
sive specialized equipment, such as a positron emission
tomography (PET) scan machine, whereas other services

such as transplant procedures need a wide combination
of costs related to equipment, specialized personnel and
physicians, and availability of surgical beds and rooms on
certain days of the week. Examples mentioned reveal that
based on the service there are quite different values for the
cost of satisfied or unmet demand. Geographic layout of
the hospital system is another key factor in locating the
specialized services. The candidate hospitals in the system
can be located quite near to each other (e.g., in one large
city) or spread across several cities or states. Type of demand
and service levels are other important characteristics that
may provide some guidelines to decision makers as they
do location decisions. To investigate the trade-offs between
different decisions and generalize the results to a range of
MHS settings, the impact of service level at each site and
overall system, diversion cost, treatment cost, and penalty
cost and percentage of urgent demand on the allocation of
the demand and placement of the capacity decision for three
MHSs are examined in greater detail in the next section. Fig-
ures 1, 2, and 3 represent the geographic locations for MHSs
in North Carolina, Michigan, and Georgia, respectively. Each
of the networks has 100, 83, and 159 districts, respectively.
In this paper, a district corresponds to a county. In other
studies, it corresponds to a ZIP code or larger geographic
areas such as counties, states, or regions [31, 33]. Each network
has 5 hospital locations denoted by numbers 1, 2, . . . , 5. The
potential hospital locations are considered in the centers of
some of the districts. Demand originates from the center of
a district. As it has been explained in previous section, we
precalculate the retention rates that potentially apply between
districts and locations. This artifice significantly results in
reduction in the number of binary variables. Therefore,
increasing in the number of districts does not make barriers
to solving the model. The expected periodic total cost is
obtained under the optimal position of service capacity (MP
policy) for each combination of factor levels and compared
against two alternate (CD and FC) policies: (1) locating the
service at all of the sites where each of them handles its own
demand and (2) offering the service at one site to satisfy all
the network demands.

For each of the problem sets, the percentage of the total
demand originating from each district (district demand)
is set to be proportional to the population density in the
county. We assume that all the unsatisfied demands make
a diversion cost, and the standard deviation of the mixed
demand (urgent plus nonurgent) at each district is set at 25%
of the expected demand of the region. The fixed operating
and variable costs are estimated to be $900 per period and
$60 per unit, respectively. Distance between a district and a
hospital is considered according to the distance between a
county and the potential hospital location.The transportation
cost of a patient from his\her district to a hospital in the
network is assumed to be proportional to the Euclidean
distance between the district and the hospital location and is
set at $0.20 permile.The similarway is applied to calculate the
distance between hospital locations. The average diversion
cost for nonurgent demand is set at $0.30 permile.The cost of
diverting for the urgent demand is set at five levels in Table 1
to show the potentially higher diversion cost of the urgent
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Figure 1: The geographic locations for the hospital network in North Carolina in the United States, problem set 1.
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Figure 2: The geographic locations for the hospital network in Michigan in the United States, problem set 2.
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Figure 3: The geographic locations for the hospital network in Georgia in the United States, problem set 3.

demand.The penalty cost for the unmet demand is set at $220
per unit.The average lodging cost per day and average length
of stay (in days) for admissions are estimated to be $50 per day
and 𝑁(3, 1), respectively. Note that these data are simulated
based on four real-world studies [31–34] related to our work
and data provided by Health Economic Resource Center
(HERC) (http://www.herc.research.med.va.gov/). Since this
model may be applied to a specific period of time, all the
costs are projected to that period. For example, consider a
MRI machine, if its cost is considered 1.2 Million$ and its
lifetime is 10 years and during the planning period is 1 year,
the considered MRI cost in the planning period (1 year) will
be 0.12 Million$. Moreover, the costs borne by the patient

are related to costs incurred in the specific planning period.
Therefore, the demand for each service is equal to all the
patients who tend to come in hospital system in the planning
period. The patient retention rates for urgent and nonurgent
demand based on slightly gradual loss of retention (retention
that decreases slowly at 7% for every 80 miles of distance for
urgent demand and 10% for every 120 miles of distance for
nonurgent demand) according to the data provided in [33]
are set as follows.

The patient retention rates for urgent demand are

0–80 miles: 80%,
81–160 miles: 77%,
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Table 1: Considered factors and their levels for problem set 1.

Factor Level Urgent
demand

Nonurgent
demand

Diversion cost (Ds)
($/mile)

1 0.3 0.3
2 0.3 0.9
3 0.3 3
4 0.3 18
5 0.3 Infinite

Required service level
at each site (𝛼ℎ)

1 ≥70% ≥70%
2 ≥75% ≥75%
3 ≥80% ≥80%
4 ≥85% ≥85%
5 ≥90% ≥90%
6 ≥95% ≥95%

161–500 miles: 65%.

The patient retention rates for nonurgent demand are

0–120 miles: 85%,
121–240 miles: 75%,
241–500 miles: 65%.

We provide the values of experimental factors for problem
sets 1, 2, and 3 in Tables 1, 2, and 3, respectively. Furthermore,
we consider 3 policies (MP, CD, and FC) for each of the
problem sets.

The factors shown in Tables 1, 2, and 3 along with three
mentioned policies result in the experiment with 90 + 648 +
540 = 1278 test problems across the three problem sets.
The aims of the next section are to conduct computational
analysis and offer results of the experiments by solving
MINLP with the GAMS solver. Specifically, we use BARON
and AlphaECP solvers under the 30 h time limit for each
of the problems and introduced suitable upper and lower
limits on the variables and expressions [43]. We also set to
resolve a problem by BARON if by AlphaECP after 30 h the
problem is not solved to within 0.4% of the optimal solution.
The solvers provide global optimality of 99% of the 1278 test
problems within 0.01% of the time limit while the remaining
test problems are solved within 0.4% of the time limit and
45 h. The test problems of the all policies (MP, CD, and FC)
are solved to obtain global optimum solution. Generally, the
results represented in the next section denote that MP policy
outperforms bothCDandFCpolicies in terms of themajority
of the factors.

5. Discussion of Results

For each of the 1278 combinations of the factors earlier
mentioned, we obtain the total cost. Based on the results in
Table 4 and Figures 4–9, optimally sharing resources across
a MHS can enhance performance of the system in terms of
service levels, financial aspects, and accessibility. For problem
sets 1, 2, and 3, the influence of the combinations of the factors
(the service levels, percent of urgent demand and diversion

Table 2: Considered factors and their levels for problem set 2.

Factor Level Urgent
demand

Nonurgent
demand

Percent urgent
demand (pU)

1 0% 100%
2 20% 80%
3 40% 60%
4 60% 40%
5 80% 20%
6 100% 0%

Required service level
at each site (𝛼ℎ)

1 ≥70% ≥70%
2 ≥75% ≥75%
3 ≥80% ≥80%
4 ≥85% ≥85%
5 ≥90% ≥90%
6 ≥95% ≥95%

Treatment cost (𝑇)
($/unit)

1 100 100
2 120 120
3 140 140
4 160 160
5 180 180
6 200 200

Table 3: Considered factors and their levels for problem set 3.

Factor Level Urgent
demand

Nonurgent
demand

Required service level
at overall system
(𝛼system)

1 ≥70% ≥70%
2 ≥75% ≥75%
3 ≥80% ≥80%
4 ≥85% ≥85%
5 ≥90% ≥90%
6 ≥95% ≥95%

Required service level
at each site (𝛼ℎ)

1 ≥70% ≥70%
2 ≥75% ≥75%
3 ≥80% ≥80%
4 ≥85% ≥85%
5 ≥90% ≥90%
6 ≥95% ≥95%

Penalty cost (𝑝)
($/unit)

1 220 220
2 450 450
3 650 650
4 850 850
5 1050 1050

cost, penalty cost, and treatment cost) on the performance of
the different policies (MP, CD, and FC) is discussed as shown
below. When we want to evaluate the impact of one factor on
the MHSs, the value of service level and percentage of urgent
demand are set at 0.95 and 40%, respectively, and the value
of other factors is set at level 1 of those factors, unless it is
mentioned in the experiment.
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Table 4: Average distance patients travel to receive the service under the different policies (MP, CD, and FC).

Required service level
at each site (𝛼ℎ)

(CD)
Nonurgent/urgent

demand

(FC)
Nonurgent/urgent

demand

(MP) Nonurgent
demand

(MP) Urgent
demand

0.7
6.3 80.1 31.6 16.9 Problem set 1

7.9 120.3 81.4 48.8 Problem set 2

11.1 169.2 100.1 68.0 Problem set 3

0.9
6.9 92.6 29.5 15.0 Problem set 1

9.1 127.0 72.8 42.3 Problem set 2

13.9 184.5 93.9 60.7 Problem set 3
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Figure 4: Relative cost against service level at each site (𝛼ℎ) under
MP policy, problem sets 1, 2, and 3. Note: the total cost is represented
relative to the cost at service level equal to 75%.
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Figure 5: Relative cost against service level at all sites (𝛼system) as the
penalty cost increases under MP policy, problem set 3.
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Figure 6: Met demand against treatment cost under MP policy,
problem set 2.

5.1. Trade-Off between Service Levels and Total Cost under
MP Policy. At first, we consider the trade-off between the
service level at each site and total cost. Figure 4, comparing
the 6 levels for service at each site (𝛼ℎ) under MP policy for
each of the three problem sets, indicates that the objective
value (i.e., total cost) increases slowly as the service level rises
from 0.7 to 0.8. The increase becomes much faster as the
service level rises from 0.8 to 0.95. Another fact is that as
the service level rises, the jump in the total cost is larger in
problem set 3 than problem set 2 and greater in problem set
2 than problem set 1. It means that in MHSs with hospital
locations very near to each other, we can improve the service
level without considerable increase in the cost. Note that the
retention rates are primarily a function of distance; therefore,
the relatively shorter travel distances in locations close to each
other correspond to higher retention for each level of the
service.

A slight increase in the total cost by raising the service
levels from 0.7 to 0.8 in all the three networks results from
the fact that when the service level rises to 0.8, a considerable
amount of network demand (larger than required propor-
tion) is met and therefore the total penalty cost, as a part of
total cost, decreases. This decrease partially compensates for
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Figure 7: Relative total cost against service level in each site under various policies (MP, CD, and FC), problem sets 1, 2, and 3. Note: total
costs are represented relative to the cost at service level equal to 70% under MP policy.

the effects of increases in other costs (associated with addi-
tional met demand) on the total cost. It means that raising
the service level up to a specific level (in this experiment from
0.7 to 0.8) does not result in significant changes in the cost.
Therefore, with a slight increase in the cost we would be able
to achieve the higher service levels and increase met demand
inMHSs. Asmentioned above, raising the service levels more
than this specific value (0.8) causes a significant increase in
the total cost.

These results also indicate that the numbers of hospitals
set up in all problem sets are more than one. Because the
required service level for the overall system is constant (0.95)
and the maximum value for the required service level at each
site is equal to 0.95 (𝛼ℎ is not larger than 𝛼system), if only one
hospital is set up, changing the service level at each site would
have no effect on the total cost. It is interesting to note that in
problem set 1, the numbers of hospitals that need to be set up
are equal to 2 for all the service levels. In the case of problem
set 2, this value is equal to 2 for the service level from 0.7 to
0.85, but it increases to 3 for the service level from 0.85 to
0.95. In the last case (problem set 3), the numbers of hospitals

that need to be set up with specialized service are equal to 2
for the service level from 0.7 to 0.8, but it increases to 3 for
the service level from 0.8 to 0.95. It means that in MHSs with
hospital locations relatively far from each other, for providing
higher service level, it is necessary to increase the number of
hospitals that should be set up to deliver specialized service.

The results of the realistic instances of a location-
allocation model with 50 admission districts, 20 candidate
medical center locations, and 5 open treatment units also
indicated that as the minimum service level at each hospital
increases, the optimal cost increases at an increasing rate [33].

5.2. Trade-Offs between the Penalty Cost, Service Level at
Overall System, and Total Cost under MP Policy. Figure 5
indicates the effect of the different service levels of the overall
system (𝛼system) on the total expected cost under MP policy
as penalty cost increases. From this figure, we conclude that
as the overall service level in problem set 3 increases, the
total expected cost increases too. In analyzing the results
of the service levels of the overall system factor, 𝛼system, an
interaction with the penalty cost factor becomes apparent.
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Figure 8: Relative total cost against percent urgent demand (pU)
under various approaches (MP, CD, and FC), problem set 2. Note:
total costs are represented relative to the cost at percent urgent
demand equal to 0% under MP policy.
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Figure 9: Relative total cost against different diversion cost per mile
for urgent demand under MP policy, problem set 1. Note: total costs
are represented relative to the cost where diversion cost per mile for
urgent demand is equal to 0.3.

The results illustrate that under $1050 per unit penalty cost,
the effect of increasing the overall service level on the total
cost is not significant. It stems from the fact that when per
unit penalty cost is so high compared to other costs, the
system tends to handle more network demand (often larger
than required) and therefore the overall service level rises
automatically, even if we require a mediocre service level. In
other words, at higher per unit penalty costs, slight change
in the total cost by increasing the overall service level results
from the fact that the penalty cost and service level affect each
other. It means that a relatively higher penalty cost results in
a higher service level.

The results obtained by locating specialized service capac-
ity inMHSs located in Indiana and Pennsylvania [34] showed
that when the penalty cost associated with unmet demand
increases, the service level increases too.

5.3. Trade-Off between the Treatment Cost and Met Demand
under MP Policy. Another interesting result is the impact
of the treatment cost on satisfied demand. Figure 6 shows
how met demand in the problem set 2 differs under the
different treatment costs. We set penalty cost at $450 per unit
in this experiment. Results illustrate that as the treatment cost
associated with satisfied demand increases, the proportion of
met demand decreases under MP policy. On average 98.1%
of the network demand is satisfied under $100 per unit
treatment (versus 94.8% satisfied demand under $200 per
unit treatment). This happens because when the treatment
cost is lower in comparison to the penalty cost, the system
prefers to meet more proportion of the network demand
to decrease the total cost. Note that this trend recurs until
satisfying more demand does not require setting up a new
hospital because setting up a new hospital imposes consider-
able amount of cost on the network. In otherwords, themodel
firstly evaluates trade-offs between costs associated with
additional met demand such as treatment, higher capacity
level, and setting up a new hospital and cost of unsatisfying
demand, then decides to handle network demand more than
mandated proportion or not. As the treatment cost increases
and reaches $180 per unit, the network tries to handle
only the required proportion of the network demand not
beyond.

The relationship between treatment cost andmet demand
has not been studied directly yet; however, the closest study
to this is in [33]. The study was about the integrated service
networks of Veterans Affairs Department and demonstrated
that by increasing the lost admission cost, the average
treatment cost increases too.The lost admission cost is federal
funding not achieved if patients are not admitted (served).

5.4. Trade-Off between Total Cost and Service Levels under
Each of the Policies (MP, CD, and FC). Figure 7, comparing
the 4 levels for service at each site (𝛼ℎ) under various policies
(MP, CD, and FC) for each of the problem sets, indicates
that as the service level in each site increases, the total cost
increases too in all three policies. For CD and FC policies
it happens because of increasing the treatment and variable
costs associated with maintaining higher capacity level. This
relationship is consistent with MP policy too, but increasing
cost in this case may also be related to the additional cost of
setting up new facility for some service levels. Results also
reveal that MP policy provides some 16.8% reduction in the
cost of CD approach and some 8.1% reduction in the cost of
FC one. This improvement is moderately consistent across
the three levels for the service factor. However, for all of the
problem sets, we may see that as the service level increases,
the benefit of MP policy decreases a little with respect to CD
approach and increases a small degree with respect to FC one.
This happens because the cost of setting up the new facility in
MP policy for higher service levels is considerable.

Another fact is that as the service level rises, the improve-
ment in the total cost in MP policy compared to CD and
FC policies is larger in problem set 3 than problem set 2 and
greater in problem set 2 than problem set 1. It means that in
MHSs with hospital locations slightly far from each other we
can better utilize the benefits of pooling resources.
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The results of a location-allocation model with 25 poten-
tial service locations, 40 districts, and 5 open treatment
units [32] also indicated that as the service level in each site
increases, the total cost increases too in all three levels of
treatment unit centralization, and partial centralization has
better performance (lower total cost) in comparison with full
centralization and complete decentralization.

5.5. Distances a Patient Must Travel to Receive the Service
under Each of the Policies (MP, CD, and FC). Distance
traveled by a customer to receive the service is another
customer service measure in designing a network. Table 4
shows the average distance a patient traveled to receive the
service under the MP, CD, and FC policies. As it is predicted,
CD policy has the best performance with regard to this
criterion. Because when all hospitals are set up with the
specialized capacity, all customers receive service locally.
However, as showed in Figure 7, offering services at all
sites may be prohibitively expensive and even impossible.
MP policy also has good performance with regard to this
measure; it does not need long-distance travel for urgent
demand. Table 4 shows that the average distances traveled
by customers with urgent demand under MP policy are 16.9,
48.8, and 68.0 miles for service level 0.7 in problem sets 1,
2, and 3, respectively, while these values are 15.0, 42.3, and
60.7 miles for service level 0.9. Since the number of hospitals
that should be set up increases in higher service levels,
and more customers receive service locally, increasing the
service level in MP policy results in a decrease in the average
distance traveled by the patients for urgent demand. The
similar results can be obtained for nonurgent demand (see
Table 4). Moreover, CD policy’s good performance in average
traveled distance criterion is moderately consistent across
the various service levels versus to MP policy. However,
for all the problem sets, as the service level increases, the
benefit of CD policy decreases a little with respect to MP
one. Under FC policy, solutions require long-distance travel
for both urgent and nonurgent demand in various service
levels.

The results of locating traumatic brain injury treatment
units in the Veterans Affairs Department and allocating of
admissions to these units [31] also showed that the traveled
distance and total travel cost in complete decentralization
and partial centralization approaches are moderately simi-
lar (complete decentralization has better performance) and
lower than full centralization one.

5.6. Percent Urgent Demand (pU) under Different Policies (MP,
CD, and FC). Figure 8 investigates the impact of percentage
of urgent demand on the total cost in problem set 2 under
different policies (MP, CD, and FC). Results show that as
the percentage of urgent demand increases, the total cost
increases at an increasing rate under the MP policy. When
the percentage of urgent demand is low, more patients enjoy
flexibility in time or location of receiving the service. In such
circumstances, scheduling procedures at alternate facilities in
advance becomes easier. Intuitively this requires setting up
fewer sites and therefore the solution to the MP policy moves
toward FC solution. Nevertheless, when the percentage of

urgent demand is high, because diversion cost of urgent
demand is expensive, more sites tend to be set up to offer
the specialized service and, therefore, the solution to the
MP moves toward CD solution. On the other hand, as the
percentage of urgent demand increases, the benefit of the
MP policy or optimally placement of the specialized capacity
increases relative to an FC policy but decreases relative to a
CD one.

The results of using panel data that comprises information
for 43 Portuguese National Health Service (NHS) hospitals
for the period 2007 to 2009 [44] indicated that for most of
their samples, hospitals that face higher urgent demand have
higher cost. In other words, as the percentage of urgent
demand increases, the total cost increases at an increasing
rate.

5.7. Trade-Off between Total Cost and Diversion Cost under
MP Policy. Division cost for CD and FC policies is zero. In
the case of a CD policy, based on retention rates and other
factors, patients refer to a hospital and each hospital has
commitment to handle its own demand and in the case of
a CD policy, all of the network demands must be handled
by one hospital and that hospital does not have permission
of rerouting the demand to another hospital in the network.
In this experiment, we examine the advantage of permitting
hospitals in a MHS to reroute urgent demand to another
location rather than making a hospital to handle its own
demand. For this purpose, we compare the cost obtained for
the MP policy when percentage of urgent demand in the
network is equal to 0.5 and the five levels for diversion cost
of urgent demand factor (𝐷𝑠) are considered.

Figure 9 shows how the total cost for problem set 1 under
MP policy varies under the different diversion costs for the
urgent demand.Thediversion cost for the nonurgent demand
is constant and set at 0.3 but the diversion cost for the urgent
demand is set at five levels (0.3, 0.9, 3, 18, and infinite) to
represent the potentially higher cost of diverting a unit of
the urgent demand. One of the diversion costs for urgent
demand factor values is equal to infinite which indicates in
this case that the demand cannot be diverted. Results indicate
that, as the diversion cost of the urgent demand increases,
the total cost increases too. Note that when Ds = infinity, the
optimal solution to the MP positions all the hospitals with
specialized capacity (as the CD policy). It means that, as the
diversion cost of urgent demand increases, the benefit of the
MP policy or optimally placement of the specialized capacity
decreases relative to a CD approach. Figure 9 shows that even
if diversion cost of the urgent demand is so high, permitting
a hospital in the MHS for diverting urgent demand cuts the
total cost considerably. For example, when𝐷𝑠 = 18 (60 times
of 𝐷𝑛), network’s cost saving is equal to 5.3%. This value for
𝐷𝑠 = 3 is equal to 20.6%.

The results of a retrospective review of administrative
data from one academic medical center for the period 2003
to 2006 [45] indicated that the decreasing in overall cost is
significant for periods of severe divert compared to no divert.
On the other hand, permitting a hospital in the MHS for
diverting the urgent demand cuts the total cost considera-
bly.
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These results especially from a managerial view are valu-
able. Providing flexibility (even a little amount) in handling
urgent demand through diversions of patient, we can achieve
considerable cost savings even if the diversion cost of urgent
demand is quite high.

A number of potential extensions exist for this research.
First, in the model we consider two types of demand:
urgent and nonurgent. We can consider different categories
of patients based on their acuity levels and differentiate the
facilities of the network by their capability to handle and
offer specialized services to the one, some, or entire of the
acuity levels. Second, our model takes into account many
key factors of the specialized services location-allocation,
but even so it has some limitations. For example, it does
not directly consider influence of number of patients on the
quality of service. If increasing in the number of patients for
handling in a particular facility enhances or decreases the
quality of service in that medical facility, then exogenously
such impacts must be studied. Third, the model developed
concentrates on cost minimization, accessibility, and service
levels, and an explicit budget limitation is not directly
considered to dictate the number andmaximum service level
of facilities thatmay be set up in theMHS. Last, based on [46]
patient length of stay has effect on emergency department
diversions.

6. Conclusion

This paper considered a stochastic optimization model and
determined the number, capacity and location of hospitals in
a MHS for offering specialized services while the hospitals
leverage benefits of sharing resources. Importantly, themodel
minimizes the total cost borne by the MHS and its patients
and incorporates patient service levels at each site and overall
system, patient retention rates, and types of demand. Compu-
tational results denoted that MHSs can better use resources
by delivering specialized services across fewer locations and
theMP policy outperformed both the CD and FC approaches
for the majority of the considered factors.

Sharing specialized hospital operations in aMHSmay not
only leverage economies of scale to decrease costs but also
result in an increase in actual and perceived quality of service.
Increasing the number of patients for a specialized operation
leads medical staffs to build their cumulative experience in
administering the service and this can enhance the quality of
service. While applying a shared resources policy has some
advantages, it may result in long-distance travel for a patient
to access the service.Therefore, the research described in this
paper takes into account accessibility and service levels as
well as the financial aspect. Our results indicate that average
distance that patients (especially with urgent demand) must
travel to receive specialized service in the MHSs is not
extensive. Our results also show that, in MHSs with hospital
locations very near to each other, we can improve the service
level without considerable increase in the cost. It also can
be concluded that providing flexibility (even a little amount)
in handling the urgent demand through diversion of the
demand can achieve considerable cost savings even if the
diversion cost of the urgent demand is quite high.
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