8 research outputs found

    Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions

    Get PDF
    This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce(3+) ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging

    Data-Driven Models for studying the Dynamics of the COVID-19 Pandemics

    Full text link
    This paper seeks to study the evolution of the COVID-19 pandemic based on daily published data from Worldometer website, using a time-dependent SIR model. Our findings indicate that this model fits well such data, for different chosen periods and different regions. This well-known model, consisting of three disjoint compartments, susceptible , infected , and removed , depends in our case on two time dependent parameters, the infection rate β(t)\beta(t) and the removal rate ρ(t)\rho(t). After deriving the model, we prove the local exponential behavior of the number of infected people, be it growth or decay. Furthermore, we extract a time dependent replacement factor σs(t)=β(t)s(t)/ρ(t)\sigma_s(t) ={\beta(t)}s(t)/{\rho(t) }, where s(t)s(t) is the ratio of susceptible people at time tt. In addition, i(t)i(t) and r(t)r(t) are respectively the ratios of infected and removed people, based on a population of size NN, usually assumed to be constant. Besides these theoretical results, the report provides simulations on the daily data obtained for Germany, Italy, and the entire World, as collected from Worldometer over the period stretching from April 2020 to June 2022. The computational model consists of the estimation of β(t)\beta(t), ρ(t)\rho(t) and s(t)s(t) based on the time-dependent SIR model. The validation of our approach is demonstrated by comparing the profiles of the collected i(t),r(t)i(t), r(t) data and those obtained from the SIR model with the approximated parameters. We also consider matching the data with a constant-coefficient SIR model, which seems to be working only for short periods. Thus, such model helps understanding and predicting the evolution of the pandemics for short periods of time where no radical change occurs.Comment: 59 page

    Ultrasound as pre-treatment for microwave drying of Myrtus communis fruits: Influence on phenolic compounds and antioxidant activity

    Get PDF
    Background: Drying constitutes the most common method of food preservation that may degrade nutrients compounds in fruits due to high temperatures and long drying times. Myrtus communis is one of the important aromatic and medicinal species, owing to these reasons, the development of new methods of drying is essential for the preservation and valorization of myrtle fruits. Aims: The aim of the present study was to investigate the effect of ultrasound as a pre-treatment (USP) at 10 min to 90 min in microwave-drying (MD) on the dehydration of myrtle Myrtus communis fruits, on phytochemical content, and on antioxidant activity. Methods: ultrasound drying as pretreatment in microwave drying, extraction yield efficiency and antioxidant activity were measured using radical scavenging assay (DPPH•) and reducing power in addition the PCA analysis was investigated to detect the relationships between variables. Results: The ultrasound pretreatment reduced notably the microwave drying time. A pretreatment of 90 min provided the most rapid drying kinetics (6 min and 5.5 min for 500 w and 700 w respectively) compared to the microwave drying alone (18 min and 11 min for 500 w and 700 w respectively). A higher phytochemical content; 219.90 ± 0.69 mg GAE/g for total phenol content (TPC) was obtained compared to those from MD and conventional drying (CD); 193.79 ± 0.99 mg GAE/g and 148.16 ± 0.95 mg GAE/g for TPC respectively. Indeed, the antioxidant activity tests revealed that ultrasound pretreatment is one of the most efficient methods to preserve the quality and the hydrogen and/or electron-donating ability of antioxidants for neutralizing DPPH radicals (98.63 %) test and reducing ferric ions to ferrous ones. Effectively, the results of PCA analysis show a higher positive correlation between antioxidant activity and flavonoids, anthocyanins, and tannins contents. Conclusions: Ultrasound pretreatment is expected to be a potential alternative to preserve fruit quality during microwave drying because it can reduce drying time at ambient temperatures while preserving natural heat-sensitive nutritive components, flavor, and color

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties

    No full text
    Recycled polypropylene (RPP) based hybrid composites of date palm wood flour/glass fibre were prepared by different weight ratios of the two reinforcements. Mixing process was carried out in an extruder and samples were prepared by injection molding machine. Recycled PP properties were improved by reinforcing it by wood flour. The tensile strength and Young’s modulus of wood flour reinforced RPP increased further by adding glass fibre. Glass fibre reinforced composites showed higher hardness than other composites. Morphological studies indicated that glass fiber has good adhesion with recycled PP supporting the improvement of the mechanical properties of hybrid composites with glass fiber addition. Addition of as little 5wt% glass fibre to wood flour reinforced RPP increases the tensile strength by about 18% relative to the wood flour reinforcement alone. An increase in wood particle content in the PP resulted in a decrease in the degree of crystallinity of the polymer. The tensile strength of the composites increased with an increase in the percentage of crystallinity when adding the glass fibre. The improvement in the mechanical properties with the increase in crystallinity percentage (and with the decrease of the lamellar thicknesses) can be attributed to the constrained region between the lamellae because the agglomeration is absent in this case.Qatar Science and Technology Park (QSTP

    Improved Electrical Conductivity of Carbon/Polyvinyl Alcohol Electrospun Nanofibers

    Get PDF
    Carbon nanofibers (CNFs) gained much interest in the last few years due to their promising electrical, chemical, and mechanical characteristics. This paper investigates a new nanocomposite composed of carbon nanofibers hosted by PVA and both are integrated in one electrospun nanofibers web. This technique shows a simple and cheap way to offer a host for CNFs using traditional deposition techniques. The results show that electrical conductivity of the formed nanofibers has been improved up to 1.63 × 10-4 S/cm for CNFs of weight 2%. The peak temperature of mass loss through TGA measurements has been reduced by 2.3%. SEM images show the homogeneity of the formed PVA and carbon nanofibers in one web, with stretched CNFs after the electrospinning process. The formed nanocomposite can be used in wide variety of applications including nanoelectronics and gas adsorption. © 2015 Nader Shehata et al
    corecore