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Abstract

This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act
as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results
qualitatively in a high concentration of Ce3+ ions required to obtain high fluorescence efficiency in the down-conversion
process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required
for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons.
This opens new opportunities for applications where emission of light via both up- and down-conversions from a single
nanomaterial is desired such as solar cells and bio-imaging.
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Background
Optical nanostructures that emit visible light when excited
by ultraviolet (UV) or infrared (IR) photons have been
extensively studied for applications that include bioima-
ging [1,2], solar energy [3,4], and optical gas sensors
[5,6]. Research on one of these nanomaterials, cerium
oxide (ceria) nanoparticles, has shown that its material
properties are extremely well suited for a lot of applications;
ceria can be employed as the optical active agent in UV
absorbents and filters [7], gas sensors [8], and bioimaging
media [9]. Visible emission from either UV excitation
(down-conversion) or IR excitation (up-conversion) can
be obtained from ceria nanoparticles. However, both
up- and down-conversion processes involve different
physiochemical properties in ceria and optimization of
each optical process via various nanoparticle synthesis
and post-growth procedures tends to quench the efficiency
of the other process.
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For example, ceria nanoparticles synthesized at or near
room temperature by a chemical precipitation method
will fluoresce in the visible wavelength region, λpeak
approximately 520 nm, when excited by near-UV photons
(λexc approximately 430 nm) [10]. The down-conversion
process requires that the cerium ions are in the Ce3+ state
and are associated with oxygen vacancies, which implies
that ceria nanoparticles contain Ce2O3 is a direct semi-
conductor [11]. To obtain visible light via up-conversion,
ceria nanoparticles must be doped with certain lanthanides,
such as erbium, then annealed at temperatures above
700°C [12]. Ceria is a low-phonon host for the erbium
ions, which act as optical centers that convert the energy
from absorbed IR photons into visible light [13]. However,
the presence of the negative-association energy element,
erbium, and the high temperature anneal causes the dom-
inant ionization state of cerium ions to be in the Ce4+

state where Ce4+ ions bond with oxygen to form CeO2,
an indirect semiconductor [10,14,15]. Hence, the down-
conversion emission efficiency of the erbium-doped
ceria nanoparticles (EDC NPs), particularly after the
thermal anneal, is low [10]. On the other hand, there is
no observable up-conversion emission from undoped
ceria nanoparticles or from ceria nanoparticles doped
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with positive association energy lanthanide. Thus, to
optimize the properties of ceria nanoparticles for the
two optical conversion processes, it has been required
two different nanoparticle synthesis and post-processing
procedures.
As shown in the illustrative diagram of Figure 1, this

work introduces a reduced EDC NPs that have the
unique material properties to act as an optical medium
for both down-conversion and up-conversion in the same
time to generate multi-wavelength visible emissions under
near UV and IR excitations, respectively. The used syn-
thesis process results in a high concentration of Ce3+

ions associated with the oxygen vacancies in ceria,
which is required to obtain high fluorescence efficiency
in the down-conversion process. Simultaneously, the
synthesized nanoparticles contain the molecular energy
levels of erbium that are required for up-conversion.
Therefore, the EDC NPs synthesized using this procedure
can emit visible light when excited with either or both
UV or IR photons. This work is the first, to the best of
the authors' knowledge, to offer one optical nanomaterial
for both up- and down-conversions simultaneously. This
opens new opportunities for applications where emission
of visible light via both up- and down-conversions from a
single nanomaterial is desired.

Methods
EDC NPs are prepared using the chemical precipitation
technique which is relatively simple and inexpensive
synthesis process [16,17]. Cerium (III) chloride (0.475 g)
and erbium (III) chloride (0.025 g) are dissolved in
de-ionized (DI) water (40 mL) to obtain a 5% weigh ratio
Figure 1 Illustrative diagram demonstrating usage of EDC NPs in gen
(up-conversion) excitations.
of erbium to cerium in the synthesized nanoparticles.
This weight ratio is selected after a study by the authors
of EDC NPs, synthesized using the same process, in
which it was found that optimal concentration of erbium
in ceria for up-conversion is 5 wt.% which is close to the
quenching ratio mentioned by another research group
[13]. The solution is stirred constantly at 500 rpm in a
water bath, while the temperature of the water bath is
raised to 60°C, and ammonia (1.6 mL) is then added to
the solution. The solution is kept at 60°C for 1.5 h and,
then, the solution is stirred for another 22.5 h at room
temperature. The colloidal solution is centrifuged and
washed with DI water and ethanol to remove any
unreacted cerium and ammonia. Then, the wet powder
is dried on a hot plate. The thermal anneal of the dried
nanoparticles is performed in a tube furnace (CM Fur-
nace, Model 1730-20HT, Bloomfield, NJ, USA) with an
atmosphere of hydrogen and nitrogen gases that are
injected into the furnace at flow rates equal to 10 and 5
standard cubic feet per minute (scfm), respectively, for
2 h at temperatures of 700°C, 800°C, and 900°C. The
gases during the anneal assist with the reduction of the
cerium ions from the Ce4+ to Ce3+ ionization states and
the creation of the oxygen vacancies [18], while the
thermal energy available during the high temperature
anneal promotes the formation of the molecular energy
levels of erbium inside the ceria host [19].
The optical absorption is measured using a dual-beam

UV-vis-NIR spectrometer (UV-3101PC Shimadzu, Kyoto,
Japan). Using the data from the linear region of absorption
spectrum, the allowed direct bandgap can be calculated
using Equation 1 [20].
erating visible light. Simultaneous UV (down-conversion) and IR



Figure 2 Experimental setup used to measure the down- and up- conversions.
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α Eð Þ ¼ A E−Eg
� �1=2 ð1Þ

where α is the absorbance coefficient, A is a constant
that depends on the effective masses of electrons and
holes in the material, E is the energy of the absorbed
photon, and Eg is the allowed direct bandgap. Following
the annealing procedure, 0.02 mg of nanoparticles is
re-suspended in 10 mL of DI water prior to optical
Figure 3 Absorbance dispersion curves (a), graphs to calculate direct
dispersion curves for the EDC NPs annealed at 700°C, 800°C, and 900°C; (b) the
and (c) a SEM image of and (d) XRD pattern from a sample of the EDC NPs foll
or unannealed).
characterization. The colloidal solution is illuminated with
near-UV light in an experimental apparatus that was
designed to measure the down-conversion process, as
described in Figure 2. To measure the up-conversion
emission when the samples are excited with near-IR
photons, a 780-nm IR laser module is substituted for
the UV lamp with the first monochromator and the
remaining equipment in the experimental setup is
bandgap (b), SEM image (c), and XRD pattern. (a) Absorbance
graphs used to calculate the direct bandgap of the annealed EDC NPs,
owing the 800°C anneal, as a representative example (AS, as-synthesized
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unchanged. A transmission electron microscope (TEM),
Phillips EM 420 (Amsterdam, The Netherlands), is used
to image EDC NPs. The mean diameter of the nanopar-
ticles is calculated using ImageJ software. The operating
parameters of the XRD, a PANalytical's X'Pert PRO X-ray
diffractometer (Almelo, The Netherlands), are 45 KV,
40 A, and CuKα radiation (λ = 0.15406 nm).
Results and discussions
The optical absorption spectra of the synthesized EDC
NPs are plotted in Figure 3a. The corresponding values
for the calculated allowed direct bandgaps of the
annealed samples are shown in Figure 3b. Compared to
the non-annealed EDC NPs, it can be observed that the
bandgap is biased towards 3 eV, which is approximately
the bandgap energy for Ce2O3. Thus, there is a high
concentration of Ce3+ and oxygen vacancies [10], after
the anneal at 700°C. The bandgap energy of the EDC NPs
is slightly larger following the 800°C anneal, indicative
of a lower concentration of Ce3+ in the nanoparticles [21].
However, there is a significant shift in the bandgap of the
EDC NPs annealed at 900°C, which suggests that the
cerium ions in the EDC NPs have been almost completely
Figure 4 Spectra of down-converted and up-converted emissions (a,b
excited at 430 nm and (b) when excited at 780 nm measured on samples
are non-radiative transitions.
converted from the Ce3+ ions into Ce4+ states during the
900°C anneal, similar to the unannealed composition.
The annealed EDC NPs are imaged using TEM and

compared to that of the unannealed EDC NPs. A repre-
sentative image is shown in Figure 3c; it is an image of
the EDC NPs after an 800°C anneal. Following the anneal
temperature range between 700°C to 900°C, the mean
diameter is found to be in the range of 9 to 13 nm as
compared to a mean diameter of 7 nm for the unannealed
(as-synthesized) EDC NPs. The synthesized EDC NPs
have mean diameter smaller than other optical nanoparti-
cles that have been studied as an optical active medium
for down- or up-conversion [22-25]. An X-ray diffraction
(XRD) pattern is presented in Figure 3d, measured on a
sample of the EDC NPs annealed at 800°C, to demonstrate
that the predominant nanostructure of the EDC NPs is
cerium dioxide [10,26]. The diffraction peaks in the XRD
patterns measured on the as-synthesized EDC NPs and
the nanoparticles annealed at 700°C and 900°C also are
characteristics of ceria.
Under near-UV (λ = 430 nm) excitation, the visible

emission from the EDC NPs is centered around 520 nm, as
shown in Figure 4a. As can be seen, the anneal conditions
at 700°C and 800°C are optimum for the down-conversion
) and diagram of up-conversion energy mechanisms (c). (a) When
of EDC NPs annealed at 700°C, 800°C, and 900°C. Dotted lines in (c)
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process, which involves the radiative relaxation of 5d to
4f transition of an excited Ce3+ ions in Ce2O3 that results
in broadband emission in the green wavelength [10,27]. A
further explanation of the down-conversion process is as
follows: When the EDC NPs containing some fraction of
Ce2O3 are illuminated with near-UV light, some fraction
of the valence band electrons are excited to an oxygen
vacancy defect state located within the CeO2 bandgap.
From the defect state, the electron undergoes multiple
transitions as it returns to the ground state. Only one of
the transitions results in radiative emission and the other
transitions are non-radiative. The rate of spontaneous
emission from the EDC NPs, which is proportional to the
amplitude of the peak intensity of the emitted fluores-
cence spectrum, is also proportional to the concentration
of the oxygen vacancies that create the defect state;
Ce3+ ions, near the conduction band. Therefore, the
EDC NPs that have the strongest fluorescence, when
annealed at 700°C, contain the highest concentration
of Ce3+ states [10]. The peak amplitude of the down-
conversion emission decreases with increasing anneal
temperature, indicating that the higher temperature
annealing reduce the concentration of oxygen vacancies
and Ce3+ ionization states. This is most clearly observed
in samples annealed at 900°C.
When the EDC NPs are excited by near-IR (λ = 780 nm)

photons, visible emission is observed at two regions in the
visible wavelength range; the primary emission is between
520 to 560 nm and a much smaller emission is found at
660 to 680 nm, as shown in Figure 4b. We hypothesize
that erbium ions form stable complexes with oxygen
in the ceria host during the anneal and the crystalline
structure of the nanoparticle improves, both of which
increase the efficiency of Er+3 ions to act as optically
active centers for up-conversion [19]. The results include
a slight improvement of the intensity of the up-conversion
emission with increasing annealing temperature. A
portion of the Dieke diagram is illustrated in Figure 4c,
which shows that excited state absorption (ESA) is
possible. First, the erbium ion is excited from 4I15/2
level to 4I9/2 [13]. From the 4I9/2 state, the excited Er+3

ion non-radiatively relaxes to the 4I11/2 state. If a second
780-nm photon interacts with the excited Er+3 ion, an
ESA process occurs, which excites the erbium ion to the
level of 4 F7/2. After a series of non-radiative relaxations
to lower levels such as 2H11/2,

4S3/2, and
4 F9/2, radiative

relaxation to the 4I15/2 state occurs and visible emission
results; green photons are emitted during the transitions
from 2H11/2 and 4S3/2 to 4I15/2 while red photons are
emitted during the 4 F9/2 to

4I15/2 transition.

Conclusions
In conclusion, this paper presents a study on a new syn-
thesized nanomaterial, EDC NPs, that emit photons in
the visible wavelength range when illuminated by two
different excitation sources: near-UV light (430 nm) and
near-IR (780 nm) light. When the excitation source is
near-UV light, a down-conversion process results in a
broad emission peak centred at 520 nm. Up-conversion
of the near-IR light is responsible for the narrower bands
of green and red emission. Anneals at temperatures of
700°C and 800°C in a hydrogen-nitrogen atmosphere
reduces the cerium ions from the Ce4+ to Ce3+ state. The
reduced state (Ce3+) associated to oxygen vacancies form
defect states that are responsible for the down-conversion
emission. At the same time, the erbium ions form
complexes with oxygen, which improves up-conversion
efficiency. EDC NPs, with average diameter of 9 to
13 nm, may be employed in new applications in bio-
medicine, solar cell technology, and gas sensing, where
an optical nanomaterial that can emit via either up- or
down-conversion may be of value.
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