65 research outputs found

    Lemon Polyphenols Suppress Diet-induced Obesity by Up-Regulation of mRNA Levels of the Enzymes Involved in β-Oxidation in Mouse White Adipose Tissue

    Get PDF
    The aim of this study was to investigate the effect of dietary lemon polyphenols on high-fat diet-induced obesity in mice, and on the regulation of the expression of the genes involved in lipid metabolism to elucidate the mechanisms. Mice were divided into three groups and fed either a low fat diet (LF) or a high fat diet (HF) or a high fat diet supplemented with 0.5% w/w lemon polyphenols (LP) extracted from lemon peel for 12 weeks. Body weight gain, fat pad accumulation, the development of hyperlipidemia, hyperglycemia, and insulin resistance were significantly suppressed by lemon polyphenols. Supplementation with lemon polyphenols also significantly up-regulated the mRNA level of the peroxisome proliferator activated receptor-α (PPARα) compared to the LF and HF groups in the liver. Furthermore, the mRNA level of acyl-CoA oxidase (ACO) was up-regulated in the LP group compared to the LF group, but not HF group in the liver, and was also significantly increased in the epididymal white adipose tissue. Thus, feeding with lemon polyphenols suppressed body weight gain and body fat accumulation by increasing peroxisomal β-oxidation through up-regulation of the mRNA level of ACO in the liver and white adipose tissue, which was likely mediated via up-regulation of the mRNA levels of PPARα

    Glial cell type-specific changes in spinal dipeptidyl peptidase 4 expression and effects of its inhibitors in inflammatory and neuropatic pain

    Get PDF
    Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various pain states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl peptidase 4 (DPP4) inhibitors induces strong antihyperalgesic effect during inflammatory pain. In this study we observed low level of DPP4 mRNA in the rat spinal dorsal horn in physiological conditions, which did not change significantly either in carrageenan-induced inflammatory or partial nerve ligation-generated neuropathic states. In naive animals, microglia and astrocytes expressed DPP4 protein with one and two orders of magnitude higher than neurons, respectively. DPP4 significantly increased in astrocytes during inflammation and in microglia in neuropathy. Intrathecal application of two DPP4 inhibitors tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin resulted in robust opioid-dependent antihyperalgesic effect during inflammation, and milder but significant opioid-independent antihyperalgesic action in the neuropathic model. The opioid-mediated antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected mainly delta-receptor activity, although mu- and kappa-receptors were also involved. None of the inhibitors influenced allodynia. Our results suggest pathology and glia-type specific changes of DPP4 activity in the spinal cord, which contribute to the development and maintenance of hyperalgesia and interact with endogenous opioid systems

    Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness

    Full text link

    A 5GHz-Band On-Chip Matching CMOS MMIC Front-End

    Get PDF
    A 5GHz--band CMOS MMIC front-end is developed,which includes a two-stage power amplifier (PA)with a single-stage push-pull driver (DRV),a three- stage low noise amplifier (LNA),and a transmit/receive (T/R)switch.The high current on-chip matching spiral inductor is used for the on-chip matching PA.On-chip matching configuration enables these circuits to connect internally.The IC performs 14.8dBm transmit power,and 4.1dB receiver noise figure at 5.2GHz
    corecore