78 research outputs found

    A real-time fingerprint-based indoor positioning using deep learning and preceding states

    Get PDF
    In fingerprint-based positioning methods, the received signal strength (RSS) vectors from access points are measured at reference points and saved in a database. Then, this dataset is used for the training phase of a pattern recognition algorithm. Several noise types impact the signals in radio channels, and RSS values are corrupted correspondingly. These noises can be mitigated by averaging the RSS samples. In real-time applications, the users cannot wait to collect uncorrelated RSS samples to calculate their average in the online phase of the positioning process. In this paper, we propose a solution for this problem by leveraging the distribution of RSS samples in the offline phase and the preceding state of the user in the online phase. In the first step, we propose a fast and accurate positioning algorithm using a deep neural network (DNN) to learn the distribution of available RSS samples instead of averaging them at the offline phase. Then, the similarity of an online RSS sample to the RPs’ fingerprints is obtained to estimate the user’s location. Next, the proposed DNN model is combined with a novel state-based positioning method to more accurately estimate the user’s location. Extensive experiments on both benchmark and our collected datasets in two different scenarios (single RSS sample and many RSS samples for each user in the online phase) verify the superiority of the proposed algorithm compared with traditional regression algorithms such as deep neural network regression, Gaussian process regression, random forest, and weighted KNN

    Confidence interval estimation for fingerprint-based indoor localization

    Get PDF
    Fingerprint-based localization methods provide high accuracy location estimation, which use machine learning algorithms to recognize the statistical patterns of collected data. In these methods, the users’ locations can be estimated based on the received signal strength vectors from some transmitters. However, the data collection is a labor-intensive phase, and the collected data should be updated periodically. Many researchers have contributed to reducing this cost. The easiest way to remove the data collection cost is to use fingerprints generated by the model-based approaches, in which the trained machine learning algorithm can be updated based on the environment changes. Probabilistic-based localization algorithms, in addition to the user location, can estimate a region of interest called 2σ confidence interval in which the probability of user presence is 95%. Gaussian process regression (GPR) is a probabilistic method that can be used to achieve this goal. However, conventional GPR (CGPR) cannot accurately estimate the confidence interval when noise-free fingerprints generated by the model-based approaches are used in the training phase. In this paper, we propose a novel GPR-based localization algorithm, named enhanced GPR (EGPR), which improves the accuracy level of confidence interval estimation compared to the existing methods while fixing the level of computational complexity in the online phase. We also theoretically prove that GPR-based algorithms are minimum variance unbiased and efficient estimators. Experiments under line-of-sight and non-line-of-sight conditions demonstrate the superiority of our proposed method over counterparts in terms of accuracy as well as applicability in real-time localization systems

    Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning

    Get PDF
    Fingerprint-based indoor positioning uses pattern recognition algorithms (PRAs) to estimate the users’ locations in wireless local area network environments, where satellite-based positioning methods cannot work properly. Traditionally, the training phase of PRA is separately conducted for \u1d465 and \u1d466 coordinates. However, the received signal strength from access points is a unique fingerprint for each measured point, not for \u1d465 and \u1d466 coordinates separately. In this letter, we propose a method to jointly employ the \u1d465 and \u1d466 coordinates during the training phase using a novel PRA-based Gaussian process regression (GPR), named 2D-GPR. Experimental results show that the proposed 2D-GPR improves the accuracy of positioning more than 40\u1d450\u1d45a in limited data samples and has a lower calculation cost compared with conventional GPR

    CSI-Based Human Activity Recognition Using Multi-Input Multi-Output Autoencoder and Fine-Tuning

    Get PDF
    Wi-Fi-based human activity recognition (HAR) has gained considerable attention recently due to its ease of use and the availability of its infrastructures and sensors. Channel state information (CSI) captures how Wi-Fi signals are transmitted through the environment. Using channel state information of the received signals transmitted from Wi-Fi access points, human activity can be recognized with more accuracy compared with the received signal strength indicator (RSSI). However, in many scenarios and applications, there is a serious limit in the volume of training data because of cost, time, or resource constraints. In this study, multiple deep learning models have been trained for HAR to achieve an acceptable accuracy level while using less training data compared to other machine learning techniques. To do so, a pre-trained encoder which is trained using only a limited number of data samples, is utilized for feature extraction. Then, by using fine-tuning, this encoder is utilized in the classifier, which is trained by a fraction of the rest of the data, and the training is continued alongside the rest of the classifier’s layers. Simulation results show that by using only 50% of the training data, there is a 20% improvement compared with the case where the encoder is not used. We also showed that by using an untrainable encoder, an accuracy improvement of 11% using 50% of the training data is achievable with a lower complexity level

    CSI-Based Human Activity Recognition using Convolutional Neural Networks

    Get PDF
    Human activity recognition (HAR) as an emerging technology can have undeniable impacts on several applications such as health monitoring, context-aware systems, transportation, robotics, and smart cities. Among the main research methods in HAR (sensor, image, and WiFi-based), the WiFi-based method has attracted considerable attention due to the ubiquity of WiFi devices. WiFi devices can be utilized to distinguish daily activities such as “walk”, “run”, and “sleep”. These activities affect WiFi signal propagation and can be further used to recognize activities. This paper proposes a Deep Learning method for HAR tasks using channel state information (CSI). A new model is developed in which CSI data are converted to grayscale images. These images are then fed into a 2D-Convolutional Neural Network (CNN) for activity classification. We take advantage of CNN's high accuracy on image classification along with WiFi-based ubiquity. The experimental results demonstrate that our proposed approach achieves acceptable performance in HAR tasks

    A CSI-Based Human Activity Recognition Using Deep Learning

    Get PDF
    The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics ofWiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities

    Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques

    Get PDF
    Human Activity Recognition (HAR) has been a popular area of research in the Internet of Things (IoT) and Human–Computer Interaction (HCI) over the past decade. The objective of this field is to detect human activities through numeric or visual representations, and its applications include smart homes and buildings, action prediction, crowd counting, patient rehabilitation, and elderly monitoring. Traditionally, HAR has been performed through vision-based, sensor-based, or radar-based approaches. However, vision-based and sensor-based methods can be intrusive and raise privacy concerns, while radar-based methods require special hardware, making them more expensive. WiFi-based HAR is a cost-effective alternative, where WiFi access points serve as transmitters and users’ smartphones serve as receivers. The HAR in this method is mainly performed using two wireless-channel metrics: Received Signal Strength Indicator (RSSI) and Channel State Information (CSI). CSI provides more stable and comprehensive information about the channel compared to RSSI. In this research, we used a convolutional neural network (CNN) as a classifier and applied edge-detection techniques as a preprocessing phase to improve the quality of activity detection. We used CSI data converted into RGB images and tested our methodology on three available CSI datasets. The results showed that the proposed method achieved better accuracy and faster training times than the simple RGB-represented data. In order to justify the effectiveness of our approach, we repeated the experiment by applying raw CSI data to long short-term memory (LSTM) and Bidirectional LSTM classifiers

    Using Synthetic Data to Enhance the Accuracy of Fingerprint-Based Localization: A Deep Learning Approach

    Get PDF
    Human-centered data collection is typically costly and implicates issues of privacy. Various solutions have been proposed in the literature to reduce this cost, such as crowd-sourced data collection, or the use of semisupervised algorithms. However, semisupervised algorithms require a source of unlabeled data, and crowd-sourcing methods require numbers of active participants. An alternative passive data collection modality is fingerprint-based localization. Such methods use received signal strength or channel state information in wireless sensor networks to localize users in indoor/outdoor environments. In this letter, we introduce a novel approach to reduce training data collection costs in fingerprint-based localization by using synthetic data. Generative adversarial networks (GANs) are used to learn the distribution of a limited sample of collected data and, following this, to produce synthetic data that can be used to augment the real collected data in order to increase overall positioning accuracy. Experimental results on a benchmark dataset show that by applying the proposed method and using a combination of 10% collected data and 90% synthetic data, we can obtain essentially similar positioning accuracy to that which would be obtained by using the full set of collected data. This means that by employing GAN-generated synthetic data, we can use 90% less real data, thereby reducing data-collection costs while achieving acceptable accuracy

    Colchicine-induced autotetraploidy and altered plant cytogenetic and morpho-physiological traits in Catharanthus roseus (L.) G. Don

    Get PDF
    Artificially induced polyploidy is often used to alter plant growth patternand genetic makeup of certain plant species. This experiment was conducted to induce autotetraploidy in Catharanthus roseus (‘Alba’) which contains diploid chromosomes. Application of four levels (0, 100, 200 and 400 mg/l) of colchicine concentrations were utilized at the two true leaf stages of C. roseus. It has been observed that 200 mg/l colchicine treatment had the most striking effect on producing polyploid plants. This concentration was able to boost yield performance and survival of tetraploids to 35% and 79% respectively. Increasing of ploidy level was confirmed by flow cytometry and chromosome number. But, plant survival significantly decreased with increased of colchicine concentration. Chromosome number, length and diameter of stomata and chloroplast number in stomata of guard cells increased with increased ploidy level, whereas the numbers of stomata decreased from 390 to 177 mm2 intetraploid plants. The overall consequence of colchicines treatment appeared to be a beneficial approach. It elucidated that the chlorophyll content, diameter of the lateral branches, leaf length and width, petal length and width, duration length of flowering, durability of flowering, root diameter, fresh and dry weight of roots, seed length and seed diameter significantly increased in tetraploid as compared to diploid plants

    Correlation between hyponatremia and high risk clinical and echocardiographic features in patients with acute heat failure

    Get PDF
    Background and purpose: Heart failure (HF) is characterized by decreased ability of the heart to provide sufficient blood flow or fill with the blood. Hyponatremia is the most commonly seen electrolyte abnormality in patients with heart failure that is associated with increased morbidity and mortality. The aim of this study was to assess the correlation between hyponatremia and high risk clinical and echocardiographic features in patients with acute HF. Materials and methods: This cross-sectional analytic study was performed in 271 patients with acute systolic heart failure admitted to Sari Fatemeh Zahra hospital, 2018-2019. Patients were divided into two groups: hyponatremic and normonatremic groups. Vital signs, echocardiographic variables, body mass index (BMI), and common cardiovascular risk factors were compared between the two groups using SPSS V18. Results: This study included 130 males (48) and 141 females (52) and the patients� mean age was 69.90±14.02 years. Patients with hyponatremia had lower BMI and systolic and diastolic blood pressure levels and higher platelet counts compared to other group (P =0.01, 0.002, 0.005, and 0.047, respectively). Also, these patients, were found with higher frequency of moderate to severe functional mitral regurgitation (P= 0.076). Linear regression analysis showed hyponatremia as an independent predictor of hypotension and hemodynamic instability in patients with hyponatremia. Conclusion: This study showed that patients with acute HF and hyponatremia are at higher risk of developing hypotension, cachexia, and increased platelet counts which put them at greater risk for cardiovascular morbidity and mortality. © 2020, Mazandaran University of Medical Sciences. All rights reserved
    • …
    corecore