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Abstract

Fingerprint-based localization methods provide high accuracy location estima-

tion, which use machine learning algorithms to recognize the statistical patterns

of collected data. In these methods, the users’ locations can be estimated based

on the received signal strength vectors from some transmitters. However, the

data collection is a labor-intensive phase, and the collected data should be up-

dated periodically. Many researchers have contributed to reducing this cost.

The easiest way to remove the data collection cost is to use fingerprints gen-

erated by the model-based approaches, in which the trained machine learning

algorithm can be updated based on the environment changes. Probabilistic-

based localization algorithms, in addition to the user location, can estimate a

region of interest called 2σ confidence interval in which the probability of user

presence is 95%. Gaussian process regression (GPR) is a probabilistic method

that can be used to achieve this goal. However, conventional GPR (CGPR)

cannot accurately estimate the confidence interval when noise-free fingerprints

generated by the model-based approaches are used in the training phase. In this

paper, we propose a novel GPR-based localization algorithm, named enhanced

GPR (EGPR), which improves the accuracy level of confidence interval estima-

tion compared to the existing methods while fixing the level of computational
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complexity in the online phase. We also theoretically prove that GPR-based al-

gorithms are minimum variance unbiased and efficient estimators. Experiments

under line-of-sight and non-line-of-sight conditions demonstrate the superior-

ity of our proposed method over counterparts in terms of accuracy as well as

applicability in real-time localization systems.

Keywords: Fingerprint-based Localization, Gaussian Process Regression,

Minimum Variance Unbiased, Cramer-Rao Lower Bound.

1. Introduction

Recently, indoor location-based services have attracted a fair amount of at-

tention in a wide variety of applications [1, 2]. Available services that use the

global positioning system can be employed for most of the application require-

ments. However, such methods do not provide high accuracy performance in in-5

door environments due to the limited coverage of satellites and non-line-of-sight

(NLOS) errors [3, 4]. Satellite-based methods regularly use ranging information

that can be obtained from techniques such as time of arrival (TOA), angle of

arrival (AOA), and received signal strength (RSS) [2].

The time of transferred signals are measured in TOA based methods [5, 6],10

and the distance between transmitter and receiver can be calculated by multi-

plying the measurement time and the speed of light [7]. AOA can be calculated

by antenna arrays [8], however, even in modern smartphones, the number of

antennas is still less than three, and it is hard to measure the angles informa-

tion. Ranging information can also be extracted via RSS by using the path-loss15

model. Among these, the RSS is still a well-known method to acquire the dis-

tance between the transmitter and receiver, since it does not implicate hardware

complexities [1]. After calculating the distance between the transmitters and a

receiver, the trilateration or triangulation methods can estimate the users’ lo-

cation. The main concern about the ranging information is that it suffers from20

NLOS error [3].

Fingerprint-based localization is one of the most popular and effective meth-
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ods to provide high accuracy, since it considers the NLOS conditions during the

data collection phase [3]. The localization process in this method is divided into

two phases: training (offline) and test (online). In the training phase, finger-25

prints of located base stations (BSs) such as RSS or channel state information

(CSI) in some known locations—called reference points (RPs)—are gathered

and saved in a database. These BSs are also known as access points (APs) in

the literature [9]. Some of the most frequently used signals are Wi-Fi [10, 11],

Bluetooth [12], ZigBee [13], and light [14]. Among these, Wi-Fi is the most30

popular one [15, 16] because of its accessibility in most environments, including

offices, buildings, shopping malls, and museums [17]. Also, most of the portable

devices provide this standard communication technology [1, 3]. After the train-

ing phase, the trained model can map the online (test) RSS or CSI data to

location coordinates.35

Recently, researchers propose to use the CSI as fingerprints of RPs for accu-

racy enhancement of location estimation [18, 19]. CSI is stable [19] and provides

more information than RSS [18]; however, measuring this information needs spe-

cial network interface controllers and software tools [1, 20]. Thus, the RSS is still

the preferred solution, especially when it comes to practical aspects of popular40

applications. Fingerprint-based localization methods can be non-probabilistic

such as k-nearest neighbors (KNN) [3], support vector regression (SVR) [21]

or can be probabilistic-based ones such as Gaussian process regression (GPR)

[22], KL divergence [23], and expectation-maximization (EM) [24]. In proba-

bilistic methods, besides the location estimation, it is possible to compute the45

confidence interval [25] and Cramer-Rao lower bound (CRLB) [22] to be used

in realistic applications and to determine the theoretical accuracy, respectively.

The data collection phase is labor-intensive, and many researchers have con-

tributed to solve this issue. The synthetic noise-free fingerprints generated by

model-based approaches (i.e., path-loss model) can be used to remove the data50

collection in the offline phase. Unlike the obtained distances by path-loss model

for trilateration or triangulation methods [3], the NLOS condition can be de-

tected in the offline phase for generating synthetic fingerprints. In the online

3
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phase of localization, the RSS samples suffer from small-scale fading and shad-

owing effects. The small-scale fading can be removed by averaging out the RSS55

samples; however, the shadowing noise cannot easily be alleviated. Therefore,

the shadowing noise remains in the online phase.

Conventional GPR (CGPR) cannot accurately estimate the confidence inter-

val for synthetic noise-free fingerprints. In this paper, we propose a GPR-based

algorithm called enhanced GPR (EGPR) to intensify the accuracy level in esti-60

mating the confidence interval. EGPR consists of two optimization and tuning

parts to estimate the 2σ confidence interval more accurately. Besides, most

of the existing works do not consider the theoretical analysis of their proposed

methods. Here, we demonstrate that a GPR-based algorithm is a minimum vari-

ance unbiased (MVU) and an efficient estimator. It means that the practical65

accuracy can reach the CRLB. To the best of our knowledge in fingerprint-based

localization, this is the first time that it is proven whether the practical accu-

racy can reach the theoretical bound (CRLB) or not. To summarize, the main

contributions of this paper can be listed as follows:

• We propose a Gaussian process regression-based algorithm, named EGPR,70

to increase the accuracy of the confidence interval estimation.

• We demonstrate that a Gaussian process regression-based algorithm is

MVU and efficient.

• We provide a complexity analysis for the proposed EGPR algorithm and

demonstrate that its complexity at the test (online) phase is the same as75

CGPR.

The rest of this paper is organized as follows: In section 2, the related works

are described. In section 3 the system model and proposed localization algo-

rithm are described in detail. Theoretical and complexity analysis is provided

in section 4. Experimental results and corresponding discussions are presented80

in section 5, and finally, section 6 concludes the paper.

In this paper we use lower-case letters to denote scalars (e.g., a), boldface

4
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lower-case letters for vectors (e.g., a), and boldface capital letters to present

matrices (e.g., A). Moreover, ai shows the ith element of vector a and aij

denotes the element within the ith row and jth column of matrix A. Also ai85

shows the ith row of matrix A. The symbols ( .̃ ) and ( .̂ ) are used to indicate

the train and test data, respectively.

2. Related Works

Although several accurate algorithms for fingerprint-based indoor localiza-

tion are proposed in the literature, most of them are not yet appropriate for90

practical scenarios due to their critical need for costly data-gathering processes

in the training phase and high level of complexity.

In [22], the researchers tried to remove the need for data gathering step in

the training phase by generating synthetic simulated data using a model-based

approach (i.e., path-loss model). They found that conventional GPR (CGPR)95

cannot reliably estimate the confidence interval for this noise-free training phase.

Therefore, they proposed a numerical approximation GPR (NaGPR) algorithm,

which significantly increases the computational complexity at the online phase

of localization. Authors in [26] used generative adversarial networks (GANs) to

generate massive synthetic training data out of a small set of really gathered100

data for the cases in which limited training data is available. However, this

technique forces a considerable computational cost at the training phase due to

the usage of GANs for each class, separately. Authors in [24] used supporting

sets that are subsets of available fingerprints similar to the test samples and a

probabilistic-based EM algorithm estimates the users’ locations. The proposed105

method forces a high calculation cost to the localization process, since the EM

algorithm is implemented in the test (online) phase. Also, the ability of EM to

estimate the confidence interval is not considered by [24]. In [10], the authors

proposed a localization method that employs the GPR to learn the distribution

of available fingerprints. Then, the obtained distribution is used for generating110

synthetic training data to be added to existing gathered training data, and
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weighted KNN is then used for location estimation procedure. However, the

confidence interval cannot be estimated in this method due to the nature of

the implemented technique. Authors in [27] proposed a crowdsourcing-based

probabilistic approach in which active participants in unfixed data points update115

the available dataset. The proposed method needs at least a robot to move in

known track lines of the environment, and this forces huge equipment costs in

the offline phase. Also, the crowdsourcing-based algorithms cannot guarantee

the desired performance as the gathered data are very noisy, and this leads to

inaccurate relations between RSS vectors and locations [28].120

When localization systems are supposed to be implemented on the user side

(mostly because of privacy reasons), NaGPR is no longer feasible due to its

computational complexity in the test (online) phase, whereas, our proposed

EGPR algorithm does not increase the complexity in the test phase, as can be

seen in section 4.125

3. System Model

In this section, we describe the underlying architecture of the proposed

EGPR-based localization, which can be used to estimate the confidence interval

accurately.

3.1. preliminaries130

RSS fingerprint-based methods measure and store the received signal strength

(called fingerprint) from APs in specific coordinates called reference points

(RPs), as depicted in Fig. 1. These RSS vectors are used in the offline phase

of the localization process. Among the fingerprint-based algorithms, the prob-

abilistic ones can estimate 2σ confidence interval in addition to the coordinates135

themselves. The 2σ confidence interval shows a region in which the user is

located with a probability of 95%.

Two types of fingerprints are used for the training phase, including noise-free

and real noisy fingerprints. The real noisy fingerprint is one that we measure in a

6
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real environment. Although this scenario considers all complexities of the indoor140

area, it is labor-intensive, and the collected fingerprints need to be updated

periodically due to the environment changes or displacement of access points

[29]. Small-scale fading and shadowing noise are the main concerns in real data

gathering scenario [22]. To mitigate the small-scale fading effect, we can average

out the RSS samples obtained from multiple times [30], while the shadowing145

noise is space-dependent and the spatial averaging is needed to reduce the effect

of this noise. The spatial averaging is impossible for the test phase because

the test location is not available in the online phase [31]. However, we can

simulate synthetic noise-free data using the path-loss model for the training

phase [22, 31]. In this scenario, the train data does not have shadowing noise,150

while the noise is added to the test data. To construct a map in the noise-free

scenario, we only need to know the APs’ and walls’ locations, which consumes

fewer efforts than RSS data collection. By doing so, we can consider the NLOS

condition, which is the utmost concern of trilateration or triangulation methods

[3]. The trained algorithm can easily be updated in the noise-free scenario based155

on the environment variations such as APs’ locations displacement.

In the training phase, we should obtain two functions for location estimation

(µx and µy) and two functions for variance estimation (ϕx and ϕy) using the

training dataset. For the training phase, we consider a dataset consists of RPs’

locations and their corresponding fingerprints as follows

R̃ = [̃r1, r̃2, · · · , r̃Ñ ]T ,
x̃ = [x̃1, x̃2, ..., x̃Ñ ]

T

ỹ = [ỹ1, ỹ2, ..., ỹÑ ]
T
,

(1)

where R̃ ∈ RÑ×M is the RSS matrix called fingerprints of RPs, r̃i is the vector of

the received signal from all APs in the ith RP, x̃ and ỹ are Cartesian coordinates

of the RPs, M is the number of APs, and Ñ is the number of RPs. The location

estimation functions map RSS vectors ri to the two-dimensional (2D) Cartesian

7
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Figure 1: Schematic of fingerprint-based localization in which the RSS vectors received from
APs (dBm) are recorded at RPs in the offline phase.

coordinates as described in (2)

xi = µx(ri) + εx and yi = µy(ri) + εy ∀ri ∈ {r̃i, r̂i}
εx ∼ N (0, σxn) and εy ∼ N (0, σyn).

(2)

Both x and y coordinates are estimated with separate optimized functions µx

and µy. The functions ϕx and ϕy estimate the variance of εx and εy, respectively.

Then, the 2σ confidence interval can be estimated by µx±2√ϕx and µy±2√ϕy.
Since the optimization process is the same for both coordinates, without loss of

generality, we use f to represent x or y, and the coordinate vectors in (1) (i.e. x̃

or ỹ) can be considered as f̃ = [f̃1, f̃2, ..., f̃Ñ ]T . Also, Eq. (2) can be re-written

as follows

fi = µ(ri) + ε and ε ∼ N (0, σn). (3)

The f̃
th

i in training data can be considered to have a joint Gaussian distribution.

For simplicity and without loss of generality, we assume a zero-mean Gaussian

process, and therefore, the vector f̃ = [f̃1, f̃2, ..., f̃Ñ ]T has the following distri-

8
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vectors.

Kernel Name Function
Hyper-

parameter(s)

Squared

Exponential (SE)
KSE(ri, rj) = γ2 exp

(
−d

2(ri, rj)

l2

)
γ and l

Linear (Lin) KLin(ri, rj) = γ2ω(ri, rj) γ

Noise (n)
Kn(ri, rj) = σ2

nδij

δij = {1 if i = j, 0 otherwise}
σn

bution [32]

f̃ ∼GP(0,C), (4)

where C ∈ RÑ×Ñ is the covariance matrix of the training data. Each element

of this matrix demonstrates the similarity between two elements of the vector

f̃ . This similarity can be captured by different kernel functions such as linear,

squared exponential, and Noise kernel, as depicted in Table 1 [32].160

In Table 1, KSE is the squared exponential kernel that captures non-linear

dependencies of RSS samples, KLin is the linear kernel that captures linear de-

pendencies of RSS samples, and Kn is the Noise kernel that models the variance

of ε in (3). The Noise kernel is independent of inputs, however, it increases

the similarity of diagonal elements and plays a pivotal role in estimating the

confidence interval. Finally, d (., .) and ω(., .) represent the Euclidean distance

and inner product, respectively, which are defined as follows

d(ri, rj) =

√
(r1i − r1j)2 + ...+ (rMi − rMj)

2
, (5)

ω(ri, rj) = (r1i · r1j) + ...+ (rMi · rMj), (6)

where ri and rj are two RSS vectors, and M is the number of APs in the

environment. A single kernel can only capture one characteristic of RSS samples

9
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Kernel Parameter in 

the Trained Model
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Validation 

Data

Online Phase

Offline Phase

Figure 2: Architecture of proposed EGPR in offline and online phases.

[10], and therefore, we have preferred to use the combination of different kernels.

The architecture of the proposed fingerprinting-based EGPR is depicted in

Fig. 2. As can be seen, the training data is employed to optimize the hyper-165

parameters of kernel functions. In the next step, the Noise kernel parameter

is tuned by using the validation data to estimate the confidence interval accu-

rately. After the offline phase, the system is ready to be utilized in the online

phase to determine the location and its corresponding confidence interval for

the new input, also known as “test data”.170

3.2. Training Phase

GPR-based algorithms are specified by kernel functions with their hyperpa-

rameters where should be optimized in the training phase [10]. In this section,

we present the hyperparameter optimization procedure for a combination of

three different kernels of Table 1 to capture linear and non-linear dependencies

of RSS distribution

cij = KSE(r̃i, r̃j) +KLin(r̃i, r̃j) +Kn(r̃i, r̃j)

= γ21 exp

(
−d

2(r̃i ,̃rj)

l2

)
+ γ22ω(r̃i ,̃rj) + σ2

nδij ,

where, δij = {1 if i = j, 0 otherwise},

(7)

10
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In (7), cij is the element at the ith row and jth column of C. The vector

θ = [γ1, γ2, l, σn]
T contains all hyperparameters that should be optimized in

the training phase. The hyperparameters in θ can be estimated from an opti-

mization problem to maximize the log-likelihood of the multivariate probability

density function of training samples or to minimize the negative ones as below

θ̃ = argmax
θ

log(p(f̃)) = argmin
θ

(− log(p(f̃))), (8)

where p(f̃) is the multivariate probability density function defined in (9)

p(f̃) =
1

(2π)
Ñ/2|C|1/2

exp(−1

2
f̃TC−1f̃). (9)

Therefore, the objective function which should be optimized in (8) can be writ-

ten as follows

L(θ) = − log p(f̃) =
1

2
log |C|+ Ñ

2
log(2π) +

1

2
f̃TC−1f̃ . (10)

The Eq. (8) shows a non-convex optimization problem; however, we can use

the gradient-based optimizers (e.g., conjugate gradient [33] or gradient descent

[34]) to solve the problem for a locally optimum point. The gradient of L(θ) for
each hyperparameter in optimization process can be calculated as follows

∇L(θj) =
∂(− log p(f̃))

∂θj

= −1

2
tr((ssT −C−1)

∂C

∂θj
) where s = C−1f̃ ,

(11)

where ∂C
∂θj
∈ RÑ×Ñ is a symmetric matrix, and each element of this matrix is

calculated by the gradient of kernel function with respect to the ith hyperpa-

rameter. After calculating ∇L(θi) for the ith hyperparameter, it can be fed into

the ith element of a vector ϑ, called gradient vector. The hyperparameters in175

θ can be updated until reaching a convergence by using the gradient descent or

conjugate gradient algorithm. Here, we use the conjugate gradient algorithm as

11
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provided in Appendix B.

Considering σn in (7) as a learning parameter can capture the noise when

real noisy data is used for the training phase, because the noise extracted from180

training data can be used in the test phase to estimate the confidence interval.

However, this scheme cannot be used in the noise-free scenario, because unlike

the test observations, the train observations are not noisy and the noise cannot

be estimated with the training dataset. In section 3.4, we propose the tuning

procedure to overcome this problem.185

3.3. Test Phase

We need to find the posterior distribution to estimate the users’ locations

and their confidence intervals. The GPR is able to provide both information at

the same time. First, the joint distribution of the train and test samples can be

written as follows


 f̃

f̂


 ∼ N




 0

0


 ,


 C C(r̃, r̂)

C(r̂, r̃) C(r̂, r̂)




 , (12)

where C ∈ RÑ×Ñ is the covariance matrix calculated from the train observa-

tions, (C(r̃, r̂))T = C(r̂, r̃) ∈ RN̂×Ñ is the covariance matrix calculated from the

test and train observations, and C(r̂, r̂) ∈ RN̂×N̂ is the covariance matrix calcu-

lated from the test observations. All elements of covariance matrices in (12) are

calculated with kernel functions obtained from (8). Also, f̂ is the vector of real

test values (users’ locations) that should be estimated with conditioning over

the f̃ as follows [32]

f̂ |̃f ∼ N (µ, Φ)

µ = C(r̂, r̃)C−1f̃

Φ = C(r̂, r̂)−C(r̂, r̃)C−1C(r̃, r̂),

(13)

where µ is the vector of estimated coordinates and Φ is the corresponding co-

variance matrix for all users. The diagonal elements of Φ represent the variance

12
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of estimated locations in µ. Therefore, the 2σ confidence interval for the ith

user can be calculated by µi ± 2
√
ϕii, where µi is the i

th element of µ and ϕii190

is the ith diagonal element of Φ.

The optimized hyperparameters in (8) and the training data in (1) can be

delivered to smartphones or other portable devices to estimate the location

and confidence interval from (13). Note that when the location estimation is

performed on the user side, µ and Φ have only one element, and each user195

performs the (13) separately. However, we explained the test phase of the

Gaussian process in (13) for a general form that can calculate all users’ locations

and corresponding covariance matrix simultaneously. The diagonal elements of

Φ for synthetic noise-free fingerprints are small and cannot be used to determine

the 2σ confidence interval accurately [15]. In section 3.4, we propose tuning200

procedure to estimate the 2σ confidence interval for noise-free scenarios.

3.4. Tuning The Parameter of Noise Kernel Kn

The parameter of Noise kernel Kn is chosen during the optimization of (8).

However, experimental results show that it is not accurate to estimate the 2σ

confidence interval for the synthetic noise-free training fingerprints [15]. In

this section, we explain the tuning procedure of the Noise kernel parameter σn

to overcome the small estimation of the confidence interval. To tune the Noise

kernel parameter, we need to find the relation between Φ and σ2
n. In other word,

the effect of σ2
n on the Φ should be known when it increases. First, by using

the mathematical formulation, we show that by adding σ2
n to diagonal elements

of C and C(r̂, r̂) in (13), the variance of posterior distribution Φ will increase.

Then, we propose a method to choose the proper value of σn. Considering the

added parameter to diagonal elements of C and C(r̂, r̂) in (13), we can write

Φ = σ2
nI + C(r̂, r̂)−C(r̂, r̃) (σ2

nI + C)−1(C(r̂, r̃))T . (14)

The second term C(r̂, r̂) already exists on the Φ in (13) and does not change

the diagonal elements of Φ. It is clear that σ2
nI in the first term, is positive and

13
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increases the diagonal elements of Φ. Expansion of the third term in (14) is as

follows

C(r̂, r̃) (σ2
nI + C)−1(C(r̂, r̃))T

= C(r̂, r̃) (σ2
n C−1C + CC−1C)−1(C(r̂, r̃))T

= C(r̂, r̃)((σ2
n C−1 + CC−1)C)−1(C(r̂, r̃))T

= C(r̂, r̃)C−1(σ2
n C−1 + I)−1(C(r̂, r̃))T

ts
=C(r̂, r̃)C−1(I− σ2

n C−1 + (σ2
n C−1)2 − ...)(C(r̂, r̃))T

' C(r̂, r̃)C−1(I− σ2
n C−1)(C(r̂, r̃))T

= C(r̂, r̃)C−1(C(r̂, r̃))T − σ2
n C(r̂, r̃)C−1 (C−1C(r̂, r̃))T ,

(15)

where “ts” in the fifth line of (15) is the Taylor series. In the last line of

(15) the first term C(r̂, r̃)C−1(C(r̂, r̃))T already exists in (13) and does not

change the diagonal elements of Φ. We need to show that diagonal elements in

the second term σ2
n C(r̂, r̃)C−1 (C−1C(r̂, r̃))T are positive. The σ2

n is positive

and therefore, we just consider C(r̂, r̃)C−1 (C−1C(r̂, r̃))T . By assuming that

A = C(r̂, r̃)C−1, it can be shown that diagonal elements of AAT are positive,

and therefore by adding σ2
n to diagonal elements of C and C(r̂, r̂) the estimated

variances in Φ will increase. To select the suitable value of σn, we carry the σn

over the values between σdown
n and σup

n with steps of ς and compute the true

estimate region percentage (TERP). The values of σdown
n , σup

n , and the step size

ς depend on the data and are chosen experimentally. The TERP is calculated

as follows

TERP =


 1

N̂

N̂∑

i=1

Γi


 ,

where, Γi =





1 |f̂i − µi| ≤ 2
√
ϕii

0 otherwise.
.

(16)

The TERP criterion shows the user presence for the estimated 2σ confidence

interval. After calculating the TERP values for σn in the interval [σdown
n , σup

n ],

we can choose a proper value for σn. We hold all values of σn on a vector
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ψ, where the TERP is between TERPd and TERPu, and then the median

of ψ is selected. This process means that the probability of user presence is

between TERPd and TERPu. We choose the upper and lower TERP such that

0.9 ≤ TERPd < TERPu ≤ 0.99. Therefore, the values of vector ψ is as follows

ψ = {σn|TERPd ≤ TERP(σn) ≤ TERPu} , (17)

where ψ is a vector consists of all values for σn in which the TERP is between

TERPd and TERPu. The σn is selected as below

[σn]sel = median{ψ}. (18)

4. Theoretical Analyses

4.1. CRLB and MVU estimator

The CRLB demonstrates the lowest possible mean squared error (MSE) for205

an estimator [35]. There are two types of CRLB in the literature for Gaussian

processes that already have been derived. One of them discusses the lower

bound of errors for estimated hyperparameters θ̃ [36], and the other one for

the estimated locations µ [22]. Here, the CRLB refers to the lower bound of

estimated locations. Considering the existing works on the theoretical analysis210

of GPR, it has not been proven whether the MSE of GPR can reach the CRLB

or not. In this section, we show that the GPR-based algorithms are MVU

and efficient estimators. It means that the MSE performance of GPR-based

algorithms can reach the CRLB. We use two lemmas as described below.

Lemma 1 (MVU estimator in vector form): Assume that µ = f̂ +w where f̂

is the vector of real outputs, µ is the vector of predicted outputs, and w is white

Gaussian noise. The probability distribution of vector µ is p(µ; f̂ ,Φ) where Φ is

the covariance matrix. If regularity condition E[∂log(p(µ;̂f ,Φ))

∂ f̂
] = 0 is satisfied,
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then the covariance matrix of any unbiased estimator must satisfy

Φ̄ ≥ 1

I(f̂)
⇒ Φ̄− I−1(f̂) ≥ 0,

where, I(f̂) =
1

−E
[
∂2 log(p(µ; f̂ ,Φ))

∂ f̂2

] , (19)

In (19), Φ̄ = E[(µ − f̂)(µ− f̂)T ], I(f̂) is the Fisher information matrix, and215

Φ̄ − I−1(f̂) ≥ 0 means that the resulting matrix is positive semidefinite. The

average of diagonal elements in Φ̄ shows the MSE and the average of diagonal

elements in I−1(f̂) shows the CRLB. Also, an unbiased estimator maybe found

that attains to the CRLB if and only if ∂ log p(µ;̂f ,Φ)

∂ f̂
= I(f̂)(g(µ)− f̂), where the

mentioned estimator g(µ) is MVU.220

Lemma 2 (Efficient estimator in vector form): If the g function is a linear

transformation of µ in the Lemma 1 (i.e. g(µ) = Aµ + b where A ∈ RR×N̂

and b ∈ RR×1), then the g(µ) is an efficient estimator.

Based on Lemma 1 and Lemma 2, we prove that GPR-based algorithms are

MVU and efficient. First, MSE for estimated locations is defined as follows

MSE =
1

N̂
tr(Φ̄

x
+ Φ̄

y
)

=
1

N̂




N̂∑

i=1

(x̂i − µxi )2 + (ŷi − µyi )
2


.

(20)

According to Lemma 1, the CRLB is available if the regularity condition is

satisfied

E

[
∂ log p(µ; f̂ ,Φ)

∂ f̂

]
= 0, (21)

where f̂ is a vector that consists of real outputs, µ is the predicted values by

GPR algorithm, w is white Gaussian noise, and the expectation is taken with

16



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

respect to p(µ; f̂ ,Φ). Therefore, we can write∫
∞

−∞

∂ log p(µ; f̂ ,Φ)

∂ f̂
p(µ; f̂ ,Φ) dµ

= k′

∫
∞

−∞
(µ− f̂) exp

(
−(µ− f̂)

T
Φ−1(µ− f̂)

)

︸ ︷︷ ︸
odd function

dµ = 0,
(22)

where k′ = Φ−1/(2π)
N̂
2 |Φ| 12 , which can be brought out from the integral oper-

ator as it does not depend on µ. We can see that the regularity condition is

satisfied, and therefore, the CRLB is available. The CRLB can be derived as

below

⇒ E[(µ− f̂)(µ− f̂)T ] ≥ CRLB,

CRLB = I(f̂)−1 =
1

−E
[
∂2(log p(µ; f̂ ,Φ))

∂ f̂2

] ,

where,

log p(µ; f̂ ,Φ) =

− N̂
2
log(2π)− 1

2
log(|Φ|)− 1

2
(µ− f̂)TΦ−1(µ− f̂),

I(f̂) = −E
[
∂2(log p(µ; f̂ ,Φ))

∂ f̂2

]
= Φ−1,

⇒ MSE ≥ 1

N̂
tr(Φ),

(23)

where I(f̂) is the Fisher information matrix and for the two-dimensional scenario

we have

MSE ≥ 1

N̂
(tr(Φx + Φy)) (24)
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Now we show that GPR is MVU and efficient

∂(log p(µ; f̂ ,Φ))

∂ f̂
=

∂

(
−1

2
(µ− f̂)

T
Φ−1(µ− f̂)

)

∂ f̂

= −1

2

∂
(
(µ− f̂) · (Φ−1(µ− f̂))

)

∂ f̂

= −1

2

(
−Φ−1(µ− f̂)−Φ−1(µ− f̂)

)

= Φ−1(µ− f̂) = I(f̂)(µ− f̂).

(25)

Therefore, µ is an MVU estimator and as µ is in the linear form (according to

Lemma 2), this MVU estimator is also efficient and can be attained to the lower225

bound.

Note that we report the root mean squared error (RMSE) in section ??,

therefore without loss of generality the CRLB for RMSE performance can be

defined by CRLB =

√
1/N̂ (tr(Φx + Φy)). The CRLB, and TERP (see Eq.

(16)) depend on diagonal elements of Φ. Also in section 3.4, we showed that230

the diagonal elements of Φ are affected by Noise kernel. Therefore, the Noise

kernel parameter plays a key role in both CRLB and TERP. Hence, the selected

values for TERPd and TERPu in (17) should not be in such a way that the

TERP exceeds 95%. Otherwise, the CRLB is wrongly placed upper than that

of RMSE.235

4.2. Complexity Analysis

Here, we use the notation O to demonstrate the order of complexity. In the

first step, we will present the complexity of the conventional GPR method in

both of the training and test phases. Then, we discuss the complexity of our

proposed EGPR. The following explanations are based on the assumption that240

M � Ñ and N̂ � Ñ . We note that N̂ = 1 when the algorithm is performed

on the user side.

Training phase: The conjugate gradient algorithm just needs the first-

order gradient ∇L(θ) to optimize the hyperparameters, where the complexity

of the first-order gradient is O(Ñ3), because the inversion matrix has O(Ñ3)245
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complexity in (11). The other operations such as calculation of all elements in

∂C
∂θj

and C need O(MÑ2) computations. Therefore, the complexity of GPR in

training phase is equal to O(Ñ3).

Test phase: The complexity of calculating the elements of C and C(r̂, r̃)

matrices in (13) is equivalent to O(MÑ2) and O(MÑN̂), respectively. To250

calculate µ, it needs O(Ñ3), O(Ñ2) and O(ÑN̂) operations for A1 = C−1,

A2 = A1f̃ and C(r̂, r̃)A2, respectively. Therefore, the complexity order of

calculating µ is O(Ñ3). Also, calculation of Φ needs operations with the orders

of O(Ñ3), O(Ñ2N̂), and O(N̂2Ñ) for A1 = C−1, A2 = A1(C(r̂, r̃))T , and

A3 = C(r̂, r̃)A2, respectively. Therefore, the complexity of calculating Φ is255

O(Ñ3).

Complexity of EGPR and NaGPR: To tune the Noise kernel parameter

in the proposed EGPR method, we need to estimate the outputs’ mean and

variance for L =
σup
n −σdown

n

ς times, and we know that the estimations of µ and Φ

are in the order of O(Ñ3). Therefore, the complexity of this process is O(LÑ3)260

in the offline phase. The online phase of EGPR is the same as the online phase

of CGPR, therefore, the complexity of EGPR in the online phase is O(Ñ3).

NaGPR [22] calculates the outputs’ mean and variance for S times in the online

phase, where S is the number of iteration in which the shadowing noise is added

to the RSS vectors. Thus, the complexity of NaGPR equals to O(SÑ3) in the265

online phase. The S is a user-defined value, and the broader S leads to a more

accurate confidence interval estimation.

5. Results and discussion

In this section, we perform the experiments on both simulated test data and

really-collected test samples. In section 5.1, we present the performed simula-270

tions for both LOS and NLOS conditions, and in section 5.2, we perform the

experiment on the really-collected test samples. Using the noise-free dataset in

the training phase has three advantages, especially for large areas: a) it removes

the data collection stage that is labor-intensive. b) the trained algorithm can
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easily be replaced according to the environment changes such as APs’ locations275

displacement. c) the shadowing noise is mitigated from training data.

5.1. Numerical results

We generate RSS values from 25 APs on 500 RPs in a 100m × 100m area.

The relationship between RSS value and distance is as follows [37]

Pr = P0 − 10ηlog10(d/d0)−
W∑

i=1

WAFi + X (σs), (26)

where Pr is the received power at distance d from the transmitter, P0 is the

received signal power at reference distance d0, the parameter η is chosen based

on the environment, X (σs) is zero-mean Gaussian noise with σs deviant that280

models the shadowing noise, and WAFi is the wall attenuation factor of the ith

wall, and W is the number of walls between the transmitter and receiver. We

set the parameters with proposed values in [38] that have been summarized in

Table 2.

Table 2: Simulation parameters in the noise-free scenario.

System parameters Value

Path-loss parameters [38]

d0 = 5m
P0 = −49 dBm
η =

{
5 if d ≤ 5m
4 if d > 5m

Wall attenuation factor WAF = 10 dBm
Receiver sensitivity -95 dBm

First, we implement our proposed EGPR method in a noise-free scenario

under a LOS condition. The shadowing noise X (σs) is only added to the test

data; because, the shadowing noise is a random factor that affects the RSS

training samples. The simulated environment is depicted in Fig. 3.a for the

LOS condition and 20 test points are randomly generated in this figure. Also, 20

other points as validation data are generated to tune the Noise kernel parameter.

Here we compare the proposed EGPR with NaGPR [22] and CGPR [22]. The

mean RMSE (MRMSE) performance of the mentioned methods is depicted in
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Figure 3: The simulated environment in a noise-free scenario under (a) LOS and (b) NLOS
conditions.

Fig. 4.a which is defined as follows

MRMSE =
1

Z

Z∑

i=1

RMSEi, (27)

where RMSEi is the RMSE for the ith iteration in which the noise is added to285

the test samples (in this experiment Z = 200) and prediction is performed. As

can be seen, the EGPR has better performance and is very close to the CRLB.

The CGPR does not show a realistic 2σ confidence interval. The TERP of this

LOS scenario for x dimension has been depicted in Fig. 5.a. The horizontal line

shows the 95% confidence interval. As shown, both EGPR and NaGPR provide290

a realistic confidence interval for each level of noise deviant, whereas the CGPR

fails to estimate the confidence interval.

For the NLOS condition, the WAF is added to both of the test and train

samples, because this value is not a random factor for each point, while the

shadowing noise is only added to the test samples due to the randomness prop-295

erties of this term. Each segment wall in simulation is described by two points

and the NLOS condition can be detected by considering that the segment line

between transmitter and receiver is intersected with the segment wall or not 1.

1Please refer to Appendix A for more discussion.
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Figure 4: MRMSE performance of EGPR (proposed algorithm), CGPR [22], NaGPR [22], and
theoretical bounds under (a) LOS and (b) NLOS conditions. The Crame-Rao lower bound
(CRLB) shows the lowest possible RMSE in theoretical analysis.
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Figure 5: TERP performance of EGPR (proposed algorithm), CGPR [22], and NaGPR [22]
in x dimension under (a) LOS and (b) NLOS conditions. The horizontal line shows the 95%
confidence interval accuracy.

The simulated environment is depicted in Fig. 3.b. The MRSME performances

of the CGPR [22], NaGPR [22], and EGPR have been plotted in Fig. 4.b.300

As can be seen, the proposed EGPR outperforms the MRMSE compared with

CGPR and NaGPR. The TERP performance of the NaGPR under the NLOS

condition in low shadowing noise is small as depicted in Fig. 5.b, while the

proposed EGPR can estimate the confidence interval accurately in each level of

noise deviant.305
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Figure 6: The Schematic of the 2nd floor of Cyberspace Research Institute at Shahid Beheshti
University, where the experiment is conducted.

Table 3: Performances of algorithms in terms of RMSE and TERP in the real-world environ-
ment depicted in Fig. 6.

EGPR CGPR NaGPR

RMSE 2.72 4.65 3.93
TERP 93.33% 66.66% 86.66%

5.2. Experimental Results

In this section, we use synthetic noise-free samples in the training phase and

really-collected data for the test phase. The test data has been collected from

the 2nd floor of Cyberspace Research Institute at Shahid Beheshti University, as

depicted in Fig. 6. There are 9 APs2 in the environment, which their locations310

are known. At each TP, 100 RSS samples have been recorded, and the average

of these samples is used for the test. Also, we set -95 dBm for the RSS values of

unavailable APs at TPs. Each wall is described by two points, and the NLOS

condition is considered in the offline phase of localization. The RSS samples at

RPs are generated by the path-loss model. However, the test data (red dots)315

is collected with a smartphone. Table 3 shows the performances of algorithms

in terms of RMSE and TERP. As can be seen, the proposed method achieves

better results in terms of RMSE and TERP. It shows the robustness of the pro-

2Note that two APs (numbered as 7 and 9) are at the same locations in a 2D environment;
however, their floor are different.
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high and low level, respectively. Also, the green and red arrows demonstrate a desired and
undesired state, respectively.

Complexity
Validation Data Noise Prior Knowledge

Confidence Interval Accuracy
LOS NLOS

Online Offline LS HS LS HS
CGPR ↓ ↓ No No ↓ ↓ ↓ ↓
NaGPR ↑ ↓ No Yes ↑ ↑ ↓ ↑

Proposed EGPR ↓ ↑ Yes No ↑ ↑ ↑ ↑

posed EGPR compared with counterparts in the real-world environment.

In Table 4, we have summarized characteristics of probabilistic-based GPR al-320

gorithms in terms of online/offline complexity, the need to validation data, prior

knowledge about shadowing noise in the test data, and accuracy of confidence

interval estimation under LOS/NLOS condition in low/high shadowing noise

(LS/HS). The complexity level of calculations in CGPR is low for both online

and offline phases; however, it cannot truly estimate the 2σ confidence interval.325

The NaGPR implicates the complexity in the online phase with prior knowledge

about the shadowing noise of the test data, while it does not need validation

data. The proposed EGPR implicates the complexity in the offline phase to

estimate the noise of the data, while there is no need for prior knowledge about

shadowing noise.330

6. Conclusion

We proposed a GPR-based algorithm named enhanced GPR (EGPR), which

can estimate the 2σ confidence interval with higher accuracy particularly com-

pared with other methods for synthetic noise-free fingerprints, while it does not

increase the computational complexity in the online phase. Experimental results335

showed that when noise-free data is used in the training phase, the conventional

GPR (CGPR) method cannot estimate the 2σ confidence interval. The NaGPR

can calculate the confidence interval via high accuracy with prior knowledge

about shadowing noise; however, it increases the complexity in the online phase

that is not acceptable for real-world scenarios. We also theoretically analyzed340

the lower bound of errors in terms of CRLB and proved that the GPR-based
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algorithms are MVU and efficient estimators, which means that they can reach

the CRLB. However, to estimate a reliable CRLB, the Noise kernel parame-

ter should be tuned carefully, since both CRLB and confidence intervals are

directly affected by Noise kernel. The proposed tuning process is independent345

of the optimization process and transports the online phase complexity to the

offline phase. To reduce the offline phase complexity, one can consider how to

learn the noise of validation data in the optimization process, as a future work.

We have performed all simulations for the 2D environment, however, the

proposed method can be extended for the 3D environment to more realistically350

estimate the users’ locations. This would possibly enhance the estimation accu-

racy, because, noise-free fingerprints are generated based on a 3D distance from

the APs. Since the proposed method needs a small number of validation data

for tuning the noise kernel parameter, the validation data also can be utilized

for better choosing the path-loss parameters.355

Appendix A. NLOS condition

Access Point

User (TP)

Wall

Intersection point

Figure A.7: The locations of user, access point, and wall for detecting NLOS condition.

As depicted in Fig. A.7, the NLOS condition can be detected when the

segment line between a pair of AP and user is intersected by a walls. The user

is under the NLOS condition if we can find t and q such that

a+ tu = b+ qw, (A.1)
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by multiplying both sides of (A.1) to w we have

(a+ tu)×w = (b+ qw)×w, (A.2)

where × is cross product3 and w ×w = 0. Simplifying the above equality, we

have

t =
(b− a)×w
u×w , (A.3)

similarly for q, we have

q =
(a− b)× u
w × u , (A.4)

There are four possible situations:

1- If (b− a)×w = 0 and u×w = 0, two segments are colliner.

2- If (b− a)×w = 0 and u×w 6= 0, two segments are parallel.

3- If u ×w 6= 0, 0 ≤ t ≤ 1, and 0 ≤ q ≤ 1 , two segments are intersect at the360

point a+ tu = b+ qw.

4- Otherwise, the two segments are not parallel, however, they do not intersect

either.

References

[1] F. Zafari, A. Gkelias, K. K. Leung, A survey of indoor localization systems365

and technologies, IEEE Communications Surveys & Tutorials 21 (3) (2019)

2568–2599.

[2] P. M. Ghari, R. Shahbazian, S. A. Ghorashi, Maximum entropy-based semi-

definite programming for wireless sensor network localization, IEEE Inter-

net of Things Journal 6 (2) (2019) 3480–3491.370

[3] A. Khalajmehrabadi, N. Gatsis, D. Akopian, Modern WLAN fingerprinting

indoor positioning methods and deployment challenges, IEEE Communi-

cations Surveys & Tutorials 19 (3) (2017) 1974–2002.

3If a = (xa, ya) and therefore b = (xb, yb), the cross product for these two vector equals
to a× b = xayb − yaxb

26



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[4] M. Nabati, S. A. Ghorashi, R. Shahbazian, Joint coordinate optimization in

fingerprint-based indoor positioning, IEEE Communications Letters 25 (4)375

(2021) 1192–1195.

[5] E. Xu, Z. Ding, S. Dasgupta, Source localization in wireless sensor net-

works from signal time-of-arrival measurements, IEEE Transactions on Sig-

nal Processing 59 (6) (2011) 2887–2897.
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