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Abstract

In fingerprint-based positioning methods, the received signal strength (RSS)

vectors from access points are measured at reference points and saved in a

database. Then, this dataset is used for the training phase of a pattern recog-

nition algorithm. Several noise types impact the signals in radio channels, and

RSS values are corrupted correspondingly. These noises can be mitigated by

averaging the RSS samples. In real-time applications, the users cannot wait to

collect uncorrelated RSS samples to calculate their average in the online phase

of the positioning process. In this paper, we propose a solution for this prob-

lem by leveraging the distribution of RSS samples in the offline phase and the

preceding state of the user in the online phase.

In the first step, we propose a fast and accurate positioning algorithm using

a deep neural network (DNN) to learn the distribution of available RSS samples

instead of averaging them at the offline phase. Then, the similarity of an online

RSS sample to the RPs’ fingerprints is obtained to estimate the user’s location.

Next, the proposed DNN model is combined with a novel state-based positioning

method to more accurately estimate the user’s location. Extensive experiments

on both benchmark and our collected datasets in two different scenarios (single

RSS sample and many RSS samples for each user in the online phase) verify
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the superiority of the proposed algorithm compared with traditional regression

algorithms such as deep neural network regression, Gaussian process regression,

random forest, and weighted KNN.

Keywords: Fingerprint-based positioning, Wi-Fi, smartphone, machine

learning, deep learning.

1. Introduction

Real-time positioning with smartphones is an emerging technology in location-

based services. Global positioning system by employing the satellite signals

around the Earth plays a decisive role in real-time positioning for human re-

quirements (Khalajmehrabadi et al., 2017a). However, these signals cannot5

penetrate into indoor environments. Also, they suffer from non-line-of-sight

(NLOS) errors and are not practical for indoor or harsh outdoor areas (Kha-

lajmehrabadi et al., 2017a; Nabati et al., 2020). Satellite-based positioning

methods regularly extract the distance between some transmitters and a user

receiver. Then, triangulation or trilateration methods are used to estimate the10

user’s location (Wang et al., 2013; Thomas & Ros, 2005). The distance be-

tween a transmitter and receiver can be obtained by the angle of arrival, time

of arrival, time difference of arrival, phase of arrival, or received signal strength

(RSS) (Zafari et al., 2019). These approaches are also known as ranging-based

positioning techniques (Ghari et al., 2019) that can be locally implemented for15

an indoor environment with some base stations (BSs). Among these methods,

RSS can be easily captured, since it does not need a synchronous time clock

between transmitters and the receiver. However, all of these ranging-based po-

sitioning techniques do not provide a promising accuracy in indoor areas due to

the NLOS errors, even if they are implemented locally (Nabati et al., 2021).20

The fingerprint-based positioning method is developed to deal with the

ranging-based positioning drawback. In this method, some BSs are deployed

in an indoor area and share radio signals, which can be in the form of Wi-Fi

(Du et al., 2018), Bluetooth (Aranda et al., 2022), ZigBee (Zheng et al., 2017),
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and radio frequency identification (Ma et al., 2019). Among these communica-25

tion technologies, Wi-Fi BS (known as Wi-Fi access point (AP)) is the promi-

nent one due to its ubiquitous availability in indoor environments (Hernández

et al., 2021). After deploying APs, two different phases are performed to estab-

lish a fingerprint-based positioning method: offline (or training) and online (or

test) phases (Bai et al., 2021). First, RSS or channel state information (CSI)30

from several APs is acquired at some known locations called reference points

(RPs) and stored in a database. Usually, a pattern recognition algorithm (PRA)

is trained in the offline phase, which converts input signals’ attributions (CSI

and/or RSS) to the corresponding locations. The trained PRA estimates the

users’ locations in the online phase, using the received signals’ attributions.35

The CSI as a fingerprint is more stable than RSS (Wang et al., 2017). How-

ever, it cannot be captured with the typical AP modes and needs particular

hardware and software tools on the transmitter and receiver sides (Zafari et al.,

2019), whereas RSS can be easily captured even with an off-the-shelf smart-

phone. Thus, RSS can be launched for popular-practical and industrial ap-40

plications. However, multi-path effects such as large-scale fading (known as

shadowing) and small-scale fading profoundly impact the RSS (Zanella, 2016),

and correspondingly the RSS-based positioning accuracy (Prasad et al., 2018).

Most of the existing works average out RSS samples in both the offline and

online phases or assume that there are sufficient RSS samples1 for users in the45

online phase. However, users obviously cannot wait to collect uncorrelated RSS

samples in the online phase of a real-time positioning system using smartphones,

because they do not provide high sampling rates for scanning of the Wi-Fi

signals (Liu & Liu, 2018). Even without considering the restrictions, we lose

the statistical distribution of RSS samples by getting the average of them for50

each RP.

1The term ”sufficient RSS samples” refers to an acceptable number of samples received from

APs at a fixed location, such that the cumulative moving average of RSS samples becomes

stable after that sample. This concept is described in Fig. 4
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Although sufficient RSS samples cannot be obtained in the online phase

using off-the-shelf smartphones, the RSS samples of RPs in the offline phase can

help to recognize the statistical behavior of RSS observations. In this paper,

we propose a novel fingerprint-based positioning algorithm in which the RSS55

distribution of RPs is captured during the training process. Also, a state-based

positioning method is utilized to consider the previous state information of

users assuming that the user moves around the area in the online phase. We

first use a deep neural network (DNN) to learn the distribution of RSS samples

instead of directly converting RSS space into coordinate space. The output of60

the proposed DNN is the similarity of RSS samples to each RP. In other words,

each RP in our proposed method is a class, and its RSS samples are class

observations. In the online phase, the trained DNN estimates the similarity

of users’ RSS samples to each RP. Then, users’ locations can be estimated by

the weighted average of different RPs’ locations, where weights are outputs65

of the trained DNN (similarities). The proposed method also is extended for

situations in which there are sufficient RSS samples for users in the online phase.

It improves the accuracy of positioning compared with its counterparts in two

different datasets (an open-source dataset as well as a dataset that we collected

ourselves), considering two scenarios (a single RSS sample and sufficient RSS70

samples in the online phase). Inspired by the fact that the user exists in the

proximity of the previous states during its movement, we combine the proposed

DNN-based positioning method with a novel state-based positioning algorithm

to tackle the limitation of online phase positioning. In summary, the main

contributions of this paper are as follows:75

• We propose a DNN-based positioning algorithm that considers statistical

behaviors of RSS samples at RPs in the offline phase, and a cost function

is suggested for our proposed DNN model to optimize the layers’ weights

for giving a higher weight to the nearest RP as much as possible.

• A novel state-based positioning method is suggested, which uses the pre-80

vious states of users to increase the location estimation accuracy.
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• We provide a complexity analysis for our proposed positioning algorithm,

and extensive experiments are conducted to show the robustness of the

proposed method.

The rest of this paper is organized as follows: In section 2 related works85

are presented. In section 3 we present the preliminaries of the fingerprint-

based positioning method, and the conventional DNN-based positioning model is

described. In section 4 we explain the proposed DNN in which the distribution of

RSS samples at each RP is learned and then combined with the proposed state-

based positioning method. In section 5 the experimental results are presented to90

compare the proposed method with its counterparts. Finally, section 6 concludes

this work.

In this paper, we use bold-face capital letters for matrices or arrays (e.g., A),

bold-face lower-case letters to indicate vectors (e.g., a), and lower-case letters to

show scalars (e.g., a). Also, aij shows the element at the ith row and jth column95

of matrix A ∈ RI×J , and aij(n) is used to indicate the element’s location of a

3D array A ∈ RI×J×N .

2. Related works

To solve the drawbacks of RSS-based positioning methods, many researchers

have introduced novel techniques. Prasad et al. (2018) propose to use noise-free100

RSS training data generated by a path-loss model in the offline phase of the

positioning process. They assume that there are enough RSS samples for users

in the online phase such that RSS is not affected by small-scale fading, and a

probabilistic-based method named Gaussian process regression is used to de-

termine the users’ locations. Yang et al. (2015) propose a probabilistic-based105

k-nearest neighbors (KNN) method using all samples in the offline phase, and

also they assume that there are sufficient RSS samples at the online phase of

their proposed algorithm. Afuosi & Zoghi (2020) propose an improved version

of the KNN method utilizing the weighted average of RSS samples to reduce

the online searching process for the nearest RPs. Getting the average from110
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RSS samples at the offline phase mitigates the effect of small-scale fading and

reduces the calculations of KNN or kernel-based algorithms such as Gaussian

process regression (Prasad et al., 2018; Homayounvala et al., 2019). Khala-

jmehrabadi et al. (2017b) propose a clustering-based approach to reduce the

searching process of the online phase, using the Hamming distance between on-115

line measurements and the centroid of each cluster. Their proposed method

needs adequate RSS samples in the online phase to define the sparse vectors

for Hamming distance calculations. Fang et al. (2015) propose a histogram

equalization-based positioning method in which the histogram of online RSS

measurements is calculated with sufficient RSS samples.120

Many DNN-based positioning approaches have been studied in recent years

for different purposes of localization. (Nabati et al., 2020) proposed a deep

learning model, called generative adversarial networks, to learn the distribution

of limited data in a four-class problem. The learned DNN model is then used to

generate synthetic data, which can be combined with real data to enhance over-125

all localization accuracy. (Zheng et al., 2020) proposed a self-calibration deep

learning framework using auto-encoders to reduce the effect of environmental

changes on localization performance. (Dai et al., 2019) used the DNN for divid-

ing the area into four subareas, and an improved KNN is used to determine the

location. (Zhou et al., 2021) exploit the fingerprints’ correlations to reconstruct130

them with a deep learning framework. (Lee et al., 2022) proposed a DNN-based

framework to automatically reconstruct the fingerprinting dataset due to the

environmental changes.

Most of the researchers have used Bayesian approaches such as Kalman fil-

ter, particle filter, and their modifications to employ previous states of the users135

in the online phase of positioning. Mahfouz et al. (2014) employed a machine

learning (ML) framework to estimate the first position of the user, and then

utilized Kalman filter with acceleration data to extract the previous state infor-

mation. Zhu et al. (2018) utilized RSS values of radio-frequency-identification

(RFID) as fingerprints of RPs in the offline phase. In the online phase, they140

used a modified version of Kalman filter with phase shift data extracted from
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RFID to obtain the information of previous states. Xie et al. (2016) used mag-

netic field information as fingerprints and employed a particle filter, which uses

additional information such as velocity acceleration and angular velocity ob-

tained from inertial sensors. Recently, Silva et al. (2021) proposed a method145

that combines Wi-Fi signals with motion sensors to track the vehicles in indoor

areas.

Most of the DNN approaches are applied to learn the distribution of RSS

samples in subareas rather than learning the distribution of RSS samples at

each RP in the offline phase. Sometimes, finding the subarea is the purpose150

of the localization. However, if the goal is to find the exact location, a pat-

tern matching algorithm is utilized after finding the subarea. The proposed

DNN finds the exact location in the online phase of positioning, which makes

it different from the existing works in the literature. Also, all the aforemen-

tioned state-based positioning approaches employ extra information extracted155

from additional sensors, which are usually expensive and not available in any

communication devices. The main difference between the proposed state-based

method is that it does not need additional information and only uses preceding

RSS samples and estimated locations in the online phase.

3. Preliminaries160

In this section, we present the fundamental concept of fingerprint-based RSS

positioning in the offline and online phases. Then, the conventional DNN-based

regression (DNNR) positioning algorithm is descried. This is required as we will

compare our proposed DNN later with this algorithm.

3.1. Fingerprint-Based Positioning165

Map construction is the initial step of fingerprint-based positioning ap-

proaches, in which a reference position is considered for the origin of the en-

vironment as depicted in Fig. 1. Then, RSS values of APs are recorded at

the determined coordinates known as RPs. Also, the locations of APs are not
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Figure 1: The entire process of fingerprint-based RSS positioning that can be performed in

four steps denoted by 1 , 2 , 3 , and 4 . In 1 , the RSS samples are collected at RPs from

several APs. Then, a 3D RSS dataset and two locations’ vectors are obtained, which are

depicted in Eq. (1) and (2), respectively. In 2 , the dataset is delivered to a PRA for training.

In 3 , the online RSS sample is conveyed to the input of the trained PRA. Finally, in 4 , the

trained PRA converts the received RSS sample to the location.

needed to be known in the environment, since we assume that APs are not

moving and their RSS values are unique fingerprints at RPs. RSS values and

RPs locations are used as PRAs’ input and output, respectively. RSS is usually

measured several times at a fixed point. The structure of the raw RSS dataset

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

for all RPs can be shown by a 3D array as follows

S =




s11(n) s12(n) · · · s1M (n)

s21(n) s22(n) · · · s2M (n)
...

...
. . .

...

sR1(n) sR2(n) · · · sRM (n)




R×M×N

n = 1, 2, ..., N ,

(1)

where S ∈ RR×M×N is a 3D array consists of all APs’ samples at RPs, srm(n)

is the magnitude of the nth received sample from the mth AP at the rth RP, R

is the number of RPs, M is the number of APs, and N is the number of RSS

samples at each RP. Also, RPs’ locations can be represented as follows

x = [x1, x2, · · · , xR]
T , y = [y1, y2, · · · , yR]T . (2)

Two types of noises are mixed with the raw RSS dataset in (1), namely small-

scale and large-scale fading. The large-scale fading cannot be mitigated by

averaging the samples over time, because it is space-dependent and approxi-

mately time-invariant (Zanella, 2016). Thus, the large-scale fading remains in

the data. However, the effect of small-scale fading can be reduced by averaging

the RSS samples over time. The average of RSS samples from the raw dataset

in (1) can be shown by a 2D matrix as follows

S̄ =




s̄11 s̄12 · · · s̄1M

s̄21 s̄22 · · · s̄2M
...

...
. . .

...

s̄R1 s̄R2 · · · s̄RM




R×M

, (3)

where s̄rm is the average of RSS samples for the mth AP at the rth RP. Most of

the traditional positioning algorithms propose to use the average dataset instead

of the raw RSS dataset to alleviate the impact of small-scale fading and to reduce

the time of the searching process. Typically, a PRA learns how to convert RSS

space into coordinate space. When the training phase is performed, the trained170

PRA can estimate users’ locations. The schematic of all these processes is

9
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depicted in Fig. 1. As can be seen in Fig. 1, the RSS values of APs are

measured at RPs (black dots). Then, these data are conveyed to the database,

and the PRA performs an optimization process for fitting its hyperparameters

(or its weights) to the collected data. In the online phase, a received RSS is fed175

to the PRA for location estimation. In section 3.2, we explain this process for

conventional DNN-based positioning, which is used as a PRA.

3.2. Conventional DNN-based Positioning

Here, we explain the conventional DNN-based regression positioning algo-

rithm, which learns how to map RSS vectors to the Cartesian coordinates. This

section describes the basic model that typically is used to predict the user lo-

cation. Reading this section helps the readers to understand the differences

between the proposed DNN and the conventional one. The conventional DNN-

based regression positioning consists of M input nodes for RSS samples and two

output nodes for x and y coordinates. Since the DNN model wants to predict

the locations based on APs’ signals, the number of input nodes equals the num-

ber of APs M . In Fig. 2, the architecture of DNN-based regression positioning

is illustrated, where fl is the activation function of the lth layer, Wl is the

weight matrix for the lth layer, and vl is the input vector of the lth layer. The

layers’ weights are optimized during the training phase. In the training phase

of DNN regression, the goal is to minimize the mean squared error (MSE) be-

tween the train coordinates in (2) and predicted coordinates by DNN through

the following objective function

LMSE =
1

2R

R∑

r=1

([fx
L]r − xr)

2
+ ([fy

L]r − yr)
2
, (4)

where xr and yr are actual coordinates of the rth RP, [fx
L]r and [fy

L]r are pre-

dicted outputs for the rth RP, and R is the number of RPs. The backprop-180

agation algorithm is utilized for minimization of the objective function in (4),

which is performed in two steps: forward propagation and backward propaga-

tion (Lee et al., 2016). After optimization, the trained DNN regression can

directly convert the test RSS samples to Cartesian coordinates. Conventional

10
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Figure 2: Conventional DNN-based regression positioning.

DNN regression does not consider the statistical behavior of RSS samples at185

each RP. In the next section, we explain our proposed method to consider all

RSS samples of RPs during the training phase.

4. Proposed positioning algorithm

In this section, we first explain the proposed DNN-based positioning ap-

proach and then combine it with a novel state-based positioning method. The190

whole architecture of the proposed model is depicted in Fig. 3. The proposed

DNN-based positioning method learns the distribution of available RSS samples

at each RP in offline phase, and on the other side, the proposed state-based

positioning method uses the online RSS samples stored from previous states of

the user. More details of Fig. 3 will be explained in the following.195

4.1. Proposed DNN-based positioning method

Conventional DNN regression cannot be used for recognizing the statistical

distribution of RSS samples at each RP. Also, users in real-time applications

cannot wait to collect enough RSS samples in online phase with smartphones.

11
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Figure 3: The whole architecture of the proposed model. Steps of training the DNN, finding

optimum values for state-based positioning, and then feeding them to whole architecture of

proposed method are shown with numbers 1, 2, 3, and 4. Queue structure buffer is used for

feeding the data based on first-in-first-out order.

In Fig. 4, 75 RSS samples of two different APs are illustrated as an example.200

These RSS samples have been recorded with a smartphone in 100 consecutive

seconds at a fixed point. The cumulative moving average, which is the average

of RSS values before the nth sample, has also been illustrated in Fig. 4. As

shown, RSS samples do no change before at least three consecutive observations

(which in this example equals to 3.75 secs). Also, the average of RSS samples205

is not stable before 40 samples (which in this example equals to 50 secs). These

observations show that users cannot wait to collect uncorrelated RSS samples

in a real-time positioning application using smartphones. Depending on the

12
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Figure 4: Typical fluctuations of 75 RSS samples of two different APs at one point for 100

consecutive seconds. ”Average RSS” is the average of RSS samples before the nth sample,

which is called cumulative moving average.

smartphone model and Wi-Fi APs, the mentioned values can be different, which

are related to the sample rate of Wi-Fi signal and stability of signals. However,210

the main problem remains in the positioning system: a high number of samples

in online phase of positioning cannot be obtained. Although we cannot access

the high number of RSS samples in online phase, the samples of RPs in offline

phase can be used to recognize the RSS distributions, and this is the core idea

behind the proposed DNN model. This model not only is feasible with only215

a single RSS sample, but also can be extended for every desired number of

samples, assuming that the receiver supports high sample rates.

In our proposed DNN architecture, the input layer is the same as conven-

tional DNN regression. However, the number of output nodes equals the number

of RPs, as depicted in Fig. 5. The proposed method takes all RSS samples of

RPs during the optimization process and learns the statistical behavior of RSS

samples at each RP. In other words, each RP in our proposed method is a class,

and the distribution of RSS samples at each RP is obtained during the opti-

mization process. Also, it uses the 3D array in (1) which consists of all RSS

13
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samples at RPs instead of averaged RSS dataset in (3). The softmax activation

function is used for the output layer to limit the output values between 0 and 1,

where the sum of output values after passing from the softmax activation func-

tion equals 1. By using this activation function, the values of output nodes are

interpreted as the probability of belonging to each RP as they sum to one. In

other words, the proposed DNN is a multivariate probability density function,

which gives a higher weight to similar samples and enables it to provide more

information even with a single RSS sample in the online phase. The rth node

in the output layer is calculated as follows

SoftMax → fr
L =

exp(vr
L)

R∑

q=1

exp(vq
L)

, (5)

where
∑R

r=1 f
r
L = 1. For the training phase of the proposed method, we cannot

directly use the locations of RPs (x and y labels in (2)) as output labels for the

classification problem. Instead, we can use one-hot encoded labels for RPs as

follows

C = {[1, 0, · · · , 0]T1︸ ︷︷ ︸
c1

, [0, 1, · · · , 0]T2︸ ︷︷ ︸
c2

· · · [0, 0, · · · , 1]TR︸ ︷︷ ︸
cR

}. (6)

where cr is the label for samples of the rth RP in (1). The proposed objective

function in the optimization process is log-likelihood or cross-entropy which is

defined as follows (Hastie et al., 2009)

LENT = −
RN∑

j=1

R∑

r=1

[cr]j log
(
[fr

L]j

)
, (7)

where R is the number of the RPs (or output nodes), N is the number of samples

at each RP, RN is the total number of samples in training set, [cr]j ∈ {0, 1} is

the desired output of the jth sample at the rth node, and finally [fr
L]j ∈ [0, 1] is220

the predicted output for the jth sample at the rth node. The cross-entropy loss

function is not penalized for undesired output nodes where real output values

are 0; however, it is logarithmically penalized for desired output nodes where

the predicted value of the desired class is far away from 1. It means that the log

14
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Figure 5: Proposed DNN architecture for fingerprint-based positioning.

function favors the hard selection of a single class, which is necessary to optimize225

the layers’ weights in this way; because the obtained probability corresponding

to the closest RP should be large as much as possible. Considering each RP as a

class for the training of the proposed DNN is not easy, especially when RPs are

close to each other, because the adjacent RPs usually have similar RSS values,

and the arg minLENT gives an overfit solution most of the time. Some tricks can230

be used to avoid this problem, such as using the regularization and/or dropout

layers (Srivastava et al., 2014). First, we must ensure that the cost function

stated in (7) converges. We use the theorem presented in (Zhen et al., 2018).

Theorem 1 : If a cost function is bounded from below and monotonically

decreased with a gradient-based algorithm, it converges.235

In (7), if we prove that the term −[cr]j log
(
[fr

L]j

)
is bounded from below for

every j and i, it means that LENT is bounded from below, since the summation

is performed over a limited number of samples. The term [cr]j equals to 0 or

1. If it is zero, the whole term −[cr]j log
(
[fr

L]j

)
equals to 0. Let’s assume that

the term [cr] is 1. As we mentioned, the output of softmax activation function240

is between 0 and 1 (i.e., 0 < [fr
L]j < 1). Therefore, −∞ < log

(
[fr

L]j

)
< 0 and

we can write 0 < −[cr]j log
(
[fr

L]j

)
< ∞. Therefore, LENT is bounded from

below, and because it monotonically decreases with a gradient-based algorithm

(e.g., Adam), it converges.
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After the training phase, a straightforward way for location estimation is to

consider the maximum value of output nodes as the predicted class, and the

location of predicted RP can be considered as the final estimation. However,

this strategy does not consider other RPs’ similarities. The sum of multiply-

ing the similarity of output nodes to the RPs’ locations is a better choice be-

cause it considers all RPs’ similarities as depicted in the online phase block

of Fig. 5. Therefore, if a user receives an RSS vector ŝ = [ŝ1, ŝ2, · · · , ŝM ]T ,

the location coordinates (x̂, ŷ) can be estimated after passing from DNN units

p = fL(W
T
L−1fL−1(W

T
L−2fL−2 · · ·WT

2 f2(W
T
1 f1(̂s)) · · · )) as follows

x̂ = xTp and ŷ = yTp, (8)

where p = [p1, p2, · · · , pR]T is the similarity (probability) vector obtained from

DNN units in online phase. Eq. (8) is used when a single RSS sample is available

in the online phase. Assuming that the receiver can provide a high sampling

rate and we have access to enough samples in the online phase, a probability

matrix P is obtained for each user that can be used to more accurately estimate

the user’s location. Considering N̂ samples for users in the online phase, the

location of a user can be calculated as follows

x̂ =

N̂∑

i=1

R∑

j=1

xjpij

N̂∑

i=1

R∑

j=1

pij

=

N̂∑

i=1

xTpi

N̂
, ŷ =

N̂∑

i=1

R∑

j=1

yjpij

N̂∑

i=1

R∑

j=1

pij

=

N̂∑

i=1

yTpi

N̂
(9)

where x̂ and ŷ are estimated locations, x and y are coordinates of RPs’ locations,245

pi is the ith column of the probability matrix P, and R is the number of RPs.

4.2. Proposed state-based positioning method

The proposed DNN-based positioning method, presented in section 4.1,

learns the distribution of offline available samples to enhance the positioning ac-

curacy. However, during the users’ movement, their previous RSS samples and

estimated locations in the online phase can be helpful to achieve high accuracy.

Motivated by the fact that the user is placed in the proximity of its previous
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Figure 6: A schematic of an indoor office with a moving user.

states (depicted in Fig. 6), we propose a state-based positioning method to take

the previous information into account. The proposed method needs previous lo-

cations obtained from the proposed DNN model and the previous RSS samples

as depicted in Fig. 3. This information (including estimated locations and RSS

samples) is stored in a queue-based structure buffer whose stored data are used

based on the first-in-first-out order. We should set a maximum value to the

buffer size. Setting up a high value to the buffer size can worsen the accuracy

due to using irrelevant information far from the current location. For the first

steps where the positioning system is established and the states do not reach

the maximum buffer size, we only use the available states. If we define ẋ to

be the output of the proposed state-based positioning method, the estimated

location at the ith step can be obtained as follows

ẋi =

x̂i +
Ω∑

j=1

αjβj ẋi−j

1 +
Ω∑

j=1

αjβj

, ẏi =

ŷi +
Ω∑

j=1

αjβj ẏi−j

1 +
Ω∑

j=1

αjβj

, (10)

where α and β are adjuster weights, and Ω is the number of stored states in

the buffer. α is defined based on the state order such that it gives a higher
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weight to the most recent state. β can be defined by kernel functions to give a

higher weight to the most similar RSS of previous states. In other words, α and

β model the importance of the recent states and their similarity, respectively.

The weights are defined as follows

αj =

√
Ω− j

Ω
, βj = exp

(
−|ŝi − ŝj |

γ2

)
, (11)

where γ is the width of the given kernel function that can be set up, experimen-

tally. The proposed state-based positioning algorithm is practically convenient

since it does not need to know whether the user is moved or not. If the user250

does not move in the environment, the current state is not changed; however,

the previous estimated locations in (10) are average out based on calculated

weights, meaning that averaging process is performed for a fixed location. It

means that the proposed method can estimate the user location without need-

ing the movement state. Please note that the DNN model is the core of the255

proposed state-based positioning method. Although we can choose another ML

strategy as the core, it should be accurate enough to properly collaborate with

the proposed state-based positioning model.

The drifting problem is a common concern for state-based positioning meth-

ods. It usually happens when the locations are only predicted by the previous260

states. For instance, pedestrian dead reckoning suffers from this problem (Chen

et al., 2016). However, the proposed state-based positioning can handle this

problem because of two reasons. The first reason is that the DNN method at

each step predicts the location and has the most influence on the current pre-

dicted location. The second reason is that the adjuster weight βj gives fewer265

weights to states that are far from the current position in the RSS space.

Complexity Analysis: Here, we only describe online phase multiplication

complexity of the proposed method and compare it with traditional DNN re-

gression, because the critical part of a real-time positioning algorithm is its

online phase complexity. First, we explain the complexity of the conventional270

DNN regression, and then the complexity of the proposed method is presented.

Note that the complexity of typical activation functions’ calculations can be
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assumed to be the same as multiplication complexity because they have a finite

number of multiplications in their definitions. Also, some activation functions

depend on the exponential function that also can be expressed by a finite number275

of multiplications in the Taylor series. However, the complexity of the softmax

activation function depends on all its inputs and will be discussed in more de-

tail. We also do not discuss the state-based positioning complexity, since its

complexity order is less than DNN-based positioning and can be ignored easily.

Complexity of conventional DNN-based regression positioning: In the con-

ventional DNN regression, the number of input nodes equals M , the num-

ber of layers equals L, and there are two output nodes. Also, the number

of nodes in layer l is assumed to be hl where h1 = M and hL = 2. There

are L − 1 layers where output nodes are calculated by activation functions

and then multiplied by matrix weights. In the last layer, activation function

calculation is only needed, which is typically linear for a regression problem.

The complexity of activation function calculation generally depends on the

activation function type. Therefore, the complexity order of activation func-

tion calculation in layer l is O(a(hl)) where a(hl) is the complexity of acti-

vation function. Also, matrix weight multiplication to the output of nodes

in layer l causes O(hlhl+1) calculation complexity. Consequently, the entire

complexity order of layer l is O(a(hl) + hlhl+1). As explained above, the acti-

vation function calculation complexity is the same as multiplication complex-

ity; therefore, the complexity calculation of the lth layer can be simplified to

O(hl + hlhl+1) ≈ O((hl + 1)hl+1) ≈ O(hlhl+1), and the whole complexity cal-

culation of conventional DNN regression can be written as follows

O(
L−1∑

i=1

hihi+1). (12)

As can be seen, the complexity of conventional DNN regression does not depend280

on the number of RPs, since in the output layer we have hL = 2 ≪ hi for i < L.

Complexity of proposed DNN algorithm: The number of input nodes in our

proposed DNN architecture is the same as that of conventional DNN regression,

and the number of output nodes equals the number of RPs. The complexity of
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layers till layer L− 2 is the same as conventional DNN regression. For the (L−
1)th layer, complexity of activation function is a(hL−1), however, matrix weight

multiplication in the (L − 1)th layer depends on the number of RPs, therefore

the complexity of the (L − 1)th layer equals to O(a(hL−1) + hL−1R). In the

latest layer, the output of the softmax activation function depends on the other

outputs as shown in (5). We can assume that the complexity of exp function is

the same as multiplication complexity because it can be calculated by a finite

number of multiplications in the Taylor series. Therefore, the complexity of the

softmax activation function is O(R2) in the last layer. Also, the multiplication

complexity of obtained probabilities to the coordinates is O(R), which can be

ignored due to its less calculation cost than the other operations. Consequently,

the entire complexity of the proposed method can be expressed as follows

O(
L−2∑

i=1

hihi+1 + hL−1R+R2). (13)

As can be seen in (13), the complexity of the proposed method depends on the

number of RPs when the number of RPs is large, and this cost should be paid

for enhancing the accuracy. Assuming that there are N̂ samples for users in

the online phase, the complexity would be O(N̂(
∑L−2

i=1 hihi+1 + hL−1R+R2)).285

The large-scale areas usually have a large number of RPs. They can be divided

into different sub-areas to independently implement the proposed DNN for each

sub-area via hierarchical-based positioning algorithms (Luo & Hsiao, 2019) to

reduce this dependency on the number of RPs.

5. Experiments and Results290

The proposed DNN-based positioning algorithm has been implemented using

TensorFlow 2.8.0 library (in Python programming language)2. We conducted

2We have used an HP ProBook laptop with the following configurations. CPU: Intel(R)

Core(TM) i7-10510U @ 2.3GHz, 4 Cores, 8 Logical Processors. GPU: NVIDIA GeForce

MX250, 2.0 GB Shared GPU memory. RAM: 16GB, DDR4.
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our experiments on two different datasets (Testbed1 and Testbed2). The first

dataset has been collected at our university and the other one is a benchmark

open access dataset. Testbed1 consists of 250 points and each point has 75295

RSS samples. There are no separate TPs in this dataset and TPs are selected

randomly. In the Testbed2 there are 345 RPs, and most of these RPs have

50 RSS samples. Also, there are 119 TPs and each TP has 10 RSS samples.

We examine the proposed DNN-based positioning method on both datasets.

The combination of proposed DNN and state-based positioning methods is only300

investigated on the benchmark dataset since the test samples of this dataset

are separated from the training set and are near each other. The nearness of

test samples can simulate the adjacency of the user’s previous states during

movement. We examine the training and test phases of algorithms on a laptop;

however, we can train DNN on the server and transport the DNN’s weights to305

the user device in the online phase to estimate the user location in a real-world

scenario. Although DNNs are computationally extensive in the training phase,

they are fast in the test phase and can practically be utilized on smartphones, as

smartphone programming languages support the parallel computations (Zhang

et al., 2019).310

5.1. Testbed 1

We have developed a software tool for map construction in the offline phase.

The screen view of the developed application is illustrated in Fig. 7. This

application has been developed via Android Studio and can be installed on

smartphones with the Android operating system. As illustrated in Fig. 7(a)315

on the search tab, the application finds all of the accessible APs and registers

their unique media access control (MAC) addresses. This information is stored

in a text file within the internal storage of the smartphone. As shown in Fig.

7(b) on the record tab, the application can be customized for the configuration

and recording process. The ”sample time” demonstrates the record time for320

each sample, ”RP number” illustrates an ID for each RP, ”samples number”

is the number of samples recorded by determined ”sample time”, ”Iteration”
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(a) Search Tab (b) Record Tab

Figure 7: Developed smartphone application for RSS data gathering.

demonstrates the iteration ID of measurement at specific RP during multiple

days, and (x, y, z) are 3D coordinates of RPs (here we only use x and y).

We gathered the data using a Samsung Galaxy Grand-Prime smartphone and325

measured 75 RSS samples from 27 Wi-Fi APs for 100 consecutive seconds at

each of 250 locations on the third floor of the Electrical Engineering Department

of Shahid Beheshti University, which is depicted in Fig. 8.

We use Monte-Carlo cross-validation (Xu & Liang, 2001) to compare the

proposed method with DNN regression (DNNR) (Félix et al., 2016), RF (Guo

et al., 2018), GPR (Nabati et al., 2022; Prasad et al., 2018), and weighted KNN

(Khalajmehrabadi et al., 2017a; Liu et al., 2017) in which the train and test

samples are randomly selected for T times, and the mean average error (MAE)

is reported to reduce the error bias which is defined as follows

MAE =
1

TR̂

T∑

t=1

R̂∑

i=1

√
(x̂t

i − xt
i)

2 + (ŷt
i − yt

i)
2, (14)

where R̂ is the number of test samples, x̂t
i and ŷt

i are the real location of the ith
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Figure 8: Floor plan of the indoor environment. The data have been collected at RPs (denoted

by dots).

Figure 9: Training loss for the proposed DNN model with different epochs. The lines with

pink color show the 10 runs results and the blue line with circle marker shows the average of

these 10 runs.

user, and x̂t
i and ŷt

i are the estimated location of the ith user in the tth repeated330

time. In our experiments, we set the iteration parameter to T = 10. Also, the

number of TPs (R̂) equals (250−R)× 75 and (250−R) for the single available

RSS sample and all RSS samples, respectively.

First, we investigate the convergence of the proposed DNN model. In the

training phase, Adam optimizer is used with these parameters: α = 0.001, β1 =335
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(d) 11 APs.

Figure 10: MAE of different methods with different experiment setups, considering a single

RSS sample for each user in Testbed1.

0.9, β2 = 0.999, ϵ = 1e− 7 and the training loss (equation (7)) has been plotted

in Fig. 9 for different epochs. We have run the proposed DNN model 10 times

with different initialization seeds and random training data in our collected

dataset. In all these 10 runs, the number of APs and RPs are set to 5 and 50,

respectively. In Fig. 9, the lines with pink color show the 10 runs results and340

the blue line with circle marker shows the average of these 10 runs. As can be

seen, by increasing the number of epochs, the loss value decreases, which shows

the convergence of the proposed DNN model.

The performance of the proposed method under different experiment setups

in terms of MAE is illustrated in Fig. 10 and 11 considering the single available345

RSS sample and 75 RSS samples for users, respectively. It should be noted that

most of the detected APs in the Testbed1 are not reliable and belong to other

24



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Proposed Method DNNR RF GPR WKNN

3 5 9 11
Number of APs

2

3

4

M
A
E
(m

)

(a) 50 RPs.

3 5 9 11
Number of APs

2

3

4

M
A
E
(m

)

(b) 200 RPs.

50 100 150 200
Number of RPs

1

2

3

M
A
E
(m

)

(c) 5 APs.

50 100 150 200
Number of RPs

1

2

3
M
A
E
(m

)

(d) 11 APs.

Figure 11: MAE of different methods with different experiment setups, considering sufficient

RSS samples (75 RSS samples) for each user in Testbed1.

floors or buildings. Since unreliable APs do not provide useful information,

they might have a negative impact on the localization accuracy (Eisa et al.,

2013). Therefore, after the data collection phase, we carry out a preprocessing350

operation to choose the APs based on their reliability in simulations of the

Testbed1. APs are selected based on a predefined proportion k
K > ξ, where k is

the number of reliable samples of an AP (RSS > −70dBm), K is the number of

total samples in Testbed1 (75×250), ξ is a threshold and the higher ξ chooses

more reliable APs. We first calculate the value of k
K for each AP in the dataset.355

Then, we choose a value for ξ to select the APs. When an AP has a large

number of reliable samples in the environment, the value of k increases while K

is a fixed value for all APs. If we set a large value for ξ, it means we want more

reliable APs. Please also note that 0 ≤ k
K < 1 because the number of reliable
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(b) 11 APs & 200 RPs.

Figure 12: Empirical cumulative distribution function (ECDF) of different methods, consid-

ering a single RSS sample for users in Testbed1.

samples of an APs (k) is always less than the total number of all APs’ samples360

(K). The value of ξ is set to 0.6, 0.5, 0.4, and 0.3 for selection of 3, 5, 9, and

11 APs, respectively.

In Fig. 10(a) and Fig. 10(b), the number of RPs is fixed to 50 and 200,

respectively, and the number of APs is changed. Also, in Fig. 10(c) and Fig.

10(d), the number of APs is fixed to 5 and 11, respectively, and the number365

of RPs is changed. The same explanations hold for Fig (11). As can be seen,

the proposed method is the superior algorithm compared to others in all of

these scenarios. Although the proposed method outperforms the accuracy of

positioning in both scenarios, considering a single RSS sample and sufficient

RSS samples, comparing Fig. 10 and Fig. 11 we can conclude that the proposed370

method is more effective for real-time applications when we do not have access

to sufficient RSS samples in the online phase.

We have demonstrated the empirical cumulative distribution function (ECDF)

of different algorithms in Fig. 12 and Fig. 13, considering a single RSS sample

and sufficient RSS samples for users, respectively. In Fig. 12(a) the number375

of APs and RPs are limited to 5 APs and 50 RPs, respectively, and in Fig.

12(b) we use the full set of APs and RPs (11 APs and 200 RPs). The same

explanations hold for Fig. 13. The extracted information from Fig. 12 and Fig.

13 such as MAE, accuracy at 75th percentile (Potort̀ı et al., 2022), and accuracy
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Figure 13: Empirical cumulative distribution function (ECDF) of different methods, consid-

ering sufficient RSS samples (75 RSS samples) for users in Testbed1.

at 90th percentile is summarized in Table 1. As can be seen, the accuracy of the380

proposed method is the best among the popular algorithms and it is applicable

for a real-time scenario where we do not have access to sufficient RSS samples

in the online phase. For a fingerprint-based positioning system, it is important

to have a good performance in non-ideal scenarios when we do not have a large

number of RPs and RSS samples in the online phase due to the time-consuming385

process of data collection and sample rate of smartphones. As can be seen in

Fig. 10 and 11, the error gap between the proposed method in non-ideal sce-

narios and others is more than in ideal scenarios, especially comparing those

with single RSS samples and the full set of RSS observations; therefore, PRAs

become more similar in ideal scenarios (Nabati et al., 2021; Zhu et al., 2016).390

Table 1: Comparison of different algorithms in terms of accuracy at 75th percentile, accuracy

at 90th percentile, and MAE for different scenarios of Fig. 12 and Fig. 13 for Testbed1.

single RSS sample for each user 75 RSS samples for each user

5 APs 50 RPs 11 APs 200 RPs 5 APs 50 RPs 11 APs 200 RPs

75 perc. 90 perc. MAE 75 perc. 90 perc. MAE 75 perc. 90 perc. MAE 75 perc. 90 perc. MAE

Proposed method 3.55 5.12 2.67 2.69 3.88 2.00 2.59 3.53 1.90 1.82 2.64 1.38

DNNR 5.70 8.69 4.53 3.95 5.41 2.94 4.04 5.61 3.05 2.74 3.78 2.07

RF 5.94 8.41 4.32 4.43 6.31 3.22 3.87 5.77 2.92 2.41 3.40 1.79

GPR 4.77 7.12 3.70 3.86 5.63 2.88 3.01 4.32 2.23 2.12 2.97 1.60

WKNN 4.40 6.48 3.32 3.55 5.25 2.63 3.14 4.48 2.34 2.32 3.54 1.76
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Figure 14: The locations of RPs and TPs in Testbed2.
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(a) single RSS sample for each user.
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(b) 10 RSS samples for each user.

Figure 15: Empirical cumulative distribution function (ECDF) of different methods in

Testbed2, considering a single RSS sample for each user and sufficient RSS samples (100

RSS samples) for each user.

5.2. Testbed 2

Here we use a benchmark dataset 3 (Hoang et al., 2019) to show the ro-

bustness of our proposed algorithm. This dataset consists of 345 RPs, most of

3The dataset is available at: https://ieee-dataport.org/open-access/

wifi-rssi-indoor-localization.

28



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

which have 50 RSS samples. There are 119 locations that are used as TPs, each

of which has 10 RSS samples. We conduct the experiments, considering both

situations in which we have a single RSS sample and sufficient RSS samples

(10 RSS samples) for each user. For these two scenarios, the number of TPs

equals 119×10 = 1990 and 119, respectively. Since the RPs and TPs have been

separated in Testbed2, the comparisons are performed in terms of mean error

(ME), which is defined as follows

ME =
1

R̂

R̂∑

i=1

√
(x̂i − xi)2 + (ŷi − yi)2, (15)

where xi and yi are real TPs’ locations, x̂i and ŷi are estimated TPs’ locations,

and R̂ is the number of TPs. The ECDF of algorithms has been depicted in

Fig. (15) and their performances have been summarized in Table 2. As can be

seen, the proposed method outperforms the accuracy of positioning compared395

with others in terms of ME, accuracy at 75th percentile, and accuracy at 90th

percentile. The same conclusion of Testbed1 holds for Testbed2. The proposed

method increases the accuracy of positioning in both cases when there is only a

single RSS sample and also when there are sufficient RSS samples for users. In

the next step, we examine the combination of the proposed state-based position-400

ing method with the proposed DNN model. First, we should select an optimum

value for the buffer size Ω and kernel width γ in (11). Since we have 119 TPs

and there are 10 RSS samples at each TP, we randomly select an RSS sample at

each TP to create a random RSS sample for the path. Once the path is created,

we can use the algorithm with different values of Ω and γ and measure the ME,405

as depicted in Fig 16. The minimum ME occurs in Ω = 2 and γ = 11.

After the process of choosing Ω and γ, we create another random trial path

to test the algorithm. The ECDF of the model is depicted in Fig. 17 and com-

pared with the pure DNN-based positioning method in two different scenarios

(single RSS sample and all RSS samples). Also, Table 3 shows a summary410

performance of Fig. 17. Apart from achieving better accuracy in the state-

based positioning method, we can see another important issue in Table 3; the
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centile, 90th percentile, and ME for two different scenarios of Fig. 15.

single RSS sample for each user 10 RSS samples for each user

75 perc. 90 perc. ME 75 perc. 90 perc. ME

Proposed method 1.41 2.08 1.03 1.30 1.99 0.93

DNNR 2.39 3.54 1.88 2.02 2.69 1.60

RF 1.71 2.89 1.36 1.50 2.68 1.17

GPR 2.18 3.18 1.58 1.66 2.32 1.18

WKNN 1.65 2.56 1.23 1.53 2.20 1.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Figure 16: Mean error (ME) with different values of Ω and γ.

accuracy of the proposed method (combination of proposed DNN and proposed

state-based positioning) using only a single RSS sample is very close to the ac-

curacy of using all RSS samples. It means that with the combination of the415

proposed DNN-based positioning method and state-based positioning method

we can handle the problem of a small sampling rate.

We measured the running time of the training and testing phases of the

algorithms as stated in Table 4. For Testbed1, we used 5APs and 50 RPs for

training, and for Testbed2, we used the full dataset. The training phase of420

30



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

proposed DNN (single RSS)

proposed DNN + state (single RSS)

proposed DNN (all RSS)

proposed DNN + state (all RSS)

Figure 17: Empirical cumulative distribution function (ECDF) of the proposed method, in

differenrt scenarios.

Table 3: Comparison of different scenarios of Fig. 17 in terms of accuracy at 75th percentile,

accuracy at 90th percentile, and ME.

single RSS sample for each user 10 RSS samples for each user

75 perc. 90 perc. ME 75 perc. 90 perc. ME

Proposed DNN 1.45 2.09 1.03 1.39 1.96 0.94

Proposed DNN + state 1.13 1.59 0.81 1.03 1.42 0.73

state-based positioning refers to finding the optimum values for buffer size Ω

and kernel width γ. We used 10-fold cross-validation for finding the optimum

value of neighbors in WKNN, and the training phase of WKNN refers to finding

the optimum value of neighbors. In the test phase, we reported the estimation

time for a single TP for all algorithms. The proposed method is in the range425

of microseconds to estimate the user location. At first glance, we may say that

all algorithms are real-time. However, we should consider another important

factor that was explained before. We cannot wait to collect uncorrelated RSS

samples in the online phase. Other algorithms need to collect uncorrelated RSS

samples to achieve an acceptable accuracy. We defined another column, named430

same accuracy time (SAT), to measure the performance of algorithms at the

same accuracy. This column is filled with the information of Fig. 18. In this
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Figure 18: MAE of algorithms with different number of samples in two testbeds.

Table 4: Running time and same accuracy time (SAT) of different algorithms in two testbeds.

Testbed1 Testbed2

train test SAT train test SAT

proposed DNN (+state) 15.37s 31.1µs 31.1µs 1.66(+0.75)s 87.5(+42.0)µs 129.5µs

DNNR 1.11s 30.0µs Inf 2.04s 84.0µs Inf

RF 0.097s 1.66µs Inf 0.016s 1.54µs Inf

GPR 0.146s 3.99µs 45s 1.69s 35.3µs Inf

WKNN 0.21s 1.26µs 47.5s 0.27s 7.89µs Inf

figure, we depicted the MAE of our proposed method with only a single RSS

sample, and the MAE of other algorithms is measured with a different number

of samples. Once the MAE of an algorithm passes the proposed method by435

increasing the sample number, we measure the time. This strategy helps us to

analyze the real-time performance of algorithms at the same accuracy. The SAT

equals the estimation time plus the required time for collecting the RSS samples

to reach the performance of proposed method. Since the test time is ignorable

compared with collecting the RSS samples, we only report the required time to440

collect the samples. Also, we reported the test time for the proposed method

in the SAT column; because we only used a single RSS sample for the proposed

32



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

method.

In Testbed1, the GPR and WKNN pass the horizontal line in 36 and 38

samples, respectively. It means they need 45 and 47.5 seconds to reach the same445

accuracy of our proposed method with only a single RSS sample. In Testbed2,

they even do not pass the horizontal lines of proposed DNN and state-based

approaches. We marked the unpassed algorithms as Inf. Considering a real-

time application and the fact that the user cannot wait to get uncorrelated RSS

samples, the proposed method is more efficient than others because it gives450

the desired performance in a short-time period with only a single RSS sample.

Therefore, we should consider both the nature of algorithms and the estimation

time. A real-time system should be fast enough to provide the desired service.

The proposed method provides an accurate localization performance for real-

time applications.455

6. Conclusion

We proposed a novel fingerprint-based indoor positioning algorithm, which

improves the accuracy compared with others, considering both cases of a single

RSS sample and sufficient RSS samples for users. Evaluation of a model by con-

sidering a single RSS sample for each user is necessary as smartphones usually460

cannot capture a high number of samples in a short-time period. However, most

of the existing works did not consider the limitation of smartphones to provide

a high sample rate for scanning the RSS values received from Wi-Fi APs. Our

proposed method consists of a DNN combined with a state-based positioning

method to take preceding states of the users into consideration. The reason465

why the proposed DNN model achieves high accuracy is that the conventional

DNN-based positioning algorithm does not consider the statistical behavior of

RSS samples at each RP, and two output nodes estimate the users’ locations

directly. However, in the proposed method, one node per RP is considered in

the output layer, and pattern variation of RSS samples at each RP is obtained470

during the optimization process.
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On the other hand, the state-based positioning method by taking the pre-

ceding states’ information such as RSS values and estimated locations of the

DNN model can empower the online phase limitations. The main difference be-

tween proposed state-based positioning and other Bayesian approaches such as475

the Kalman filter and particle filter is that it does not need additional informa-

tion and hardware tool. In a typical scenario, we did not assume any restriction

or limitation for the combination of the proposed positioning method. Besides,

there is no need to add hardware or software tools, which makes it a general ap-

proach. The proposed method can be established with CSI data in future work,480

assuming that the mobile devices can capture the CSI data without additional

hardware requirements in the future.
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Real-time positioning by considering the limitations of smartphones.
Extracting the RSS distribution in the offline phase.
Leveraging previous states of users in positioning.
Showing the robustness by extensive experiments on benchmark dataset.
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