313 research outputs found
Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations
Short-range quark-quark correlations in hot nuclear matter are examined
within the modified quark-meson coupling model (MQMC) by adding repulsive
scalar and vector quark-quark interactions. Without these correlations, the bag
radius increases with the baryon density. However when the correlations are
introduced the bag size shrinks as the bags overlap. Also as the strength of
the scalar quark-quark correlation is increased, the decrease of the effective
nucleon mass with the baryonic density is slowed down and tends to
saturate at high densities. Within this model we study the phase transition
from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the
latter modeled as an ideal gas of quarks and gluons inside a bag. Two models
for the QGP bag parameter are considered. In one case, the bag is taken to be
medium-independent and the phase transition from the hadron phase to QGP is
found to occur at 5-8 times ordinary nuclear matter density for temperatures
less than 60 MeV. For lower densities, the transition takes place at higher
temperature reaching up to 130 MeV at zero density. In the second case, the QGP
bag parameter is considered medium-dependent as in the MQMC model for the
hadronic phase. In this case, it is found that the phase transition occurs at
much lower densities.Comment: 8 pages, latex, 4 eps figure
Hot Hypernuclear Matter in the Modified Quark Meson Coupling Model
Hot hypernuclear matter is investigated in an explicit SU(3) quark model
based on a mean field description of nonoverlapping baryon bags bound by the
self-consistent exchange of scalar and vector
mesons. The mean fields are assumed to couple to the
u,d-quarks while the mean fields are coupled to the s-quark. The
coupling constants of the mean fields with the quarks are assumed to satisfy
SU(6) symmetry. The calculations take into account the medium dependence of the
bag parameter on the scalar fields . We consider only the octet
baryons in hypernuclear matter. An ideal gas of the
strange mesons and is introduced to keep zero net strangeness
density. Our results for symmetric hypernuclear matter show that a phase
transition takes place at a critical temperature around 180 MeV in which the
scalar mean fields take nonzero values at zero baryon density.
Furthermore, the bag contants of the baryons decrease significantly at and
above this critical temperature indicating the onset of quark deconfinement.
The present results imply that the onset of quark deconfinement in SU(3)
hypernuclear matter is much stronger than in SU(2) nuclear matter.Comment: LaTeX/TeX 11 pages (dfg3r.tex), 9 figures in eps forma
Finite Temperature Quark Matter and Supernova Explosion
We study the equation of state of quark matter at finite temperature, using a
confinement model in which chiral symmetry remains broken in the deconfined
phase. Implications for type II supernova explosion and for the structure and
evolution of the proto-neutron star are discussed.Comment: RevTeX file + 5 postscript figure
Characterization of Marine Aerosol for Assessment of Human Exposure to Brevetoxins
Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 μg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m(3). The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6–12 μm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods
Hadronization of a Quark-Gluon Plasma in the Chromodielectric Model
We have carried out simulations of the hadronization of a hot, ideal but
effectively massive quark-gluon gas into color neutral clusters in the
framework of the semi-classical SU(3) chromodielectric model. We have studied
the possible quark-gluon compositions of clusters as well as the final mass
distribution and spectra, aiming to obtain an insight into relations between
hadronic spectral properties and the confinement mechanism in this model.Comment: 34 pages, 37 figure
Excluded Volume Effects in the Quark Meson Coupling Model
Excluded volume effects are incorporated in the quark meson coupling model to
take into account in a phenomenological way the hard core repulsion of the
nuclear force. The formalism employed is thermodynamically consistent and does
not violate causality. The effects of the excluded volume on in-medium nucleon
properties and the nuclear matter equation of state are investigated as a
function of the size of the hard core. It is found that in-medium nucleon
properties are not altered significantly by the excluded volume, even for large
hard core radii, and the equation of state becomes stiffer as the size of the
hard core increases.Comment: 14 pages, revtex, 6 figure
Modified Quark-Meson Coupling Model for Nuclear Matter
The quark-meson coupling model for nuclear matter, which describes nuclear
matter as non-overlapping MIT bags bound by the self-consistent exchange of
scalar and vector mesons, is modified by introducing medium modification of the
bag constant. We model the density dependence of the bag constant in two
different ways: one invokes a direct coupling of the bag constant to the scalar
meson field, and the other relates the bag constant to the in-medium nucleon
mass. Both models feature a decreasing bag constant with increasing density. We
find that when the bag constant is significantly reduced in nuclear medium with
respect to its free-space value, large canceling isoscalar Lorentz scalar and
vector potentials for the nucleon in nuclear matter emerge naturally. Such
potentials are comparable to those suggested by relativistic nuclear
phenomenology and finite-density QCD sum rules. This suggests that the
reduction of bag constant in nuclear medium may play an important role in low-
and medium-energy nuclear physics.Comment: Part of the text is reordered, revised version to appear in Phys.
Rev. C. 19 pages, ReVTeX, 4 figures embedde
Inhalation Toxicity of Brevetoxin 3 in Rats Exposed for Twenty-Two Days
Brevetoxins are potent neurotoxins produced by the marine dinoflagellate Karenia brevis. Exposure to brevetoxins may occur during a K. brevis red tide when the compounds become aerosolized by wind and surf. This study assessed possible adverse health effects associated with inhalation exposure to brevetoxin 3, one of the major brevetoxins produced by K. brevis and present in aerosols collected along beaches affected by red tide. Male F344 rats were exposed to brevetoxin 3 at 0, 37, and 237 μg/m(3) by nose-only inhalation 2 hr/day, 5 days/week for up to 22 exposure days. Estimated deposited brevetoxin 3 doses were 0.9 and 5.8 μg/kg/day for the low-and high-dose groups, respectively. Body weights of the high-dose group were significantly below control values. There were no clinical signs of toxicity. Terminal body weights of both low- and high-dose-group rats were significantly below control values. Minimal alveolar macrophage hyperplasia was observed in three of six and six of six of the low- and high-dose groups, respectively. No histopathologic lesions were observed in the nose, brain, liver, or bone marrow of any group. Reticulocyte numbers in whole blood were significantly increased in the high-dose group, and mean corpuscular volume showed a significant decreasing trend with increasing exposure concentration. Humoral-mediated immunity was suppressed in brevetoxin-exposed rats as indicated by significant reduction in splenic plaque-forming cells in both low- and high-dose-group rats compared with controls. Results indicate that the immune system is the primary target for toxicity in rats after repeated inhalation exposure to relatively high concentrations of brevetoxins
Neutron star properties in the quark-meson coupling model
The effects of internal quark structure of baryons on the composition and
structure of neutron star matter with hyperons are investigated in the
quark-meson coupling (QMC) model. The QMC model is based on mean-field
description of nonoverlapping spherical bags bound by self-consistent exchange
of scalar and vector mesons. The predictions of this model are compared with
quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear
matter saturation properties. By employing a density dependent bag constant
through direct coupling to the scalar field, the QMC model is found to exhibit
identical properties as QHD near saturation density. Furthermore, this modified
QMC model provides well-behaved and continuous solutions at high densities
relevant to the core of neutron stars. Two additional strange mesons are
introduced which couple only to the strange quark in the QMC model and to the
hyperons in the QHD model. The constitution and structure of stars with
hyperons in the QMC and QHD models reveal interesting differences. This
suggests the importance of quark structure effects in the baryons at high
densities.Comment: 28 pages, 10 figures, to appear in Physical Review
Basonuclin-Null Mutation Impairs Homeostasis and Wound Repair in Mouse Corneal Epithelium
At least two cellular processes are required for corneal epithelium homeostasis and wound repair: cell proliferation and cell-cell adhesion. These processes are delicately balanced to ensure the maintenance of normal epithelial function. During wound healing, these processes must be reprogrammed in coordination to achieve a rapid re-epithelialization. Basonuclin (Bnc1) is a cell-type-specific transcription factor expressed mainly in the proliferative keratinocytes of stratified epithelium (e.g., corneal epithelium, epidermis and esophageal epithelium) and the gametogenic cells in testis and ovary. Our previous work suggested that basonuclin could regulate transcription of ribosomal RNA genes (rDNA) and genes involved in chromatin structure, transcription regulation, cell-cell junction/communication, ion-channels and intracelllular transportation. However, basonuclin's role in keratinocytes has not been demonstrated in vivo. Here we show that basonuclin-null mutation disrupts corneal epithelium homeostasis and delays wound healing by impairing cell proliferation. In basonuclin-null cornea epithelium, RNA polymerase I (Pol I) transcription is perturbed. This perturbation is unique because it affects transcripts from a subset of rDNA. Basonuclin-null mutation also perturbs RNA polymerase II (Pol II) transcripts from genes encoding chromatin structure proteins histone 3 and HMG2, transcription factor Gli2, gap-junction protein connexin 43 and adheren E-cadherin. In most cases, a concerted change in mRNA and protein level is observed. However, for E-cadherin, despite a notable increase in its mRNA level, its protein level was reduced. In conclusion, our study establishes basonuclin as a regulator of corneal epithelium homeostasis and maintenance. Basonuclin likely coordinates functions of a subset of ribosomal RNA genes (rDNA) and a group of protein coding genes in cellular processes critical for the regulation of cell proliferation
- …