38,083 research outputs found
Charmed-Baryon Spectroscopy from Lattice QCD with N_f=2+1+1 Flavors
We present the results of a calculation of the positive-parity ground-state
charmed-baryon spectrum using 2+1+1 flavors of dynamical quarks. The
calculation uses a relativistic heavy-quark action for the valence charm quark,
clover-Wilson fermions for the valence light and strange quarks, and HISQ sea
quarks. The spectrum is calculated with a lightest pion mass around 220 MeV,
and three lattice spacings (a \approx 0.12 fm, 0.09 fm, and 0.06 fm) are used
to extrapolate to the continuum. The light-quark mass extrapolation is
performed using heavy-hadron chiral perturbation theory up to O(m_pi^3) and at
next-to-leading order in the heavy-quark mass. For the well-measured charmed
baryons, our results show consistency with the experimental values. For the
controversial J=1/2 Xi_{cc}, we obtain the isospin-averaged value
M_{Xi_{cc}}=3595(39)(20)(6) MeV (the three uncertainties are statistics,
fitting-window systematic, and systematics from other lattice artifacts, such
as lattice scale setting and pion-mass determination), which shows a 1.7 sigma
deviation from the experimental value. We predict the yet-to-be-discovered
doubly and triply charmed baryons Xi_{cc}^*, Omega_{cc}, Omega_{cc}^* and
Omega_{ccc} to have masses 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV,
3765(43)(17)(5) MeV and 4761(52)(21)(6) MeV, respectively.Comment: 23 pages, 14 figure
Refined topological amplitudes in N=1 flux compactification
We study the implication of refined topological string amplitudes in the
supersymmetric N=1 flux compactification. They generate higher derivative
couplings among the vector multiplets and graviphoton with generically
non-holomorphic moduli dependence. For a particular term, we can compute them
by assuming the geometric engineering. We claim that the Dijkgraaf-Vafa large N
matrix model with the beta-ensemble measure directly computes the higher
derivative corrections to the supersymmetric effective action of the
supersymmetric N=1$ gauge theory.Comment: 16 pages, v2: reference adde
Visualizing the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator
Superconductivity emerges from the cuprate antiferromagnetic Mott state with
hole doping. The resulting electronic structure is not understood, although
changes in the state of oxygen atoms appear paramount. Hole doping first
destroys the Mott state yielding a weak insulator where electrons localize only
at low temperatures without a full energy gap. At higher doping, the
'pseudogap', a weakly conducting state with an anisotropic energy gap and
intra-unit-cell breaking of 90\degree-rotational (C4v) symmetry appears.
However, a direct visualization of the emergence of these phenomena with
increasing hole density has never been achieved. Here we report atomic-scale
imaging of electronic structure evolution from the weak-insulator through the
emergence of the pseudogap to the superconducting state in Ca2-xNaxCuO2Cl2. The
spectral signature of the pseudogap emerges at lowest doping from a weakly
insulating but C4v-symmetric matrix exhibiting a distinct spectral shape. At
slightly higher hole-density, nanoscale regions exhibiting pseudogap spectra
and 180\degree-rotational (C2v) symmetry form unidirectional clusters within
the C4v-symmetric matrix. Thus, hole-doping proceeds by the appearance of
nanoscale clusters of localized holes within which the broken-symmetry
pseudogap state is stabilized. A fundamentally two-component electronic
structure11 then exists in Ca2-xNaxCuO2Cl2 until the C2v-symmetric clusters
touch at higher doping, and the long-range superconductivity appears.Comment: See the Nature Physics website for the published version available at
http://dx.doi.org/10.1038/Nphys232
On Gauge Theory and Topological String in Nekrasov-Shatashvili Limit
We study the Nekrasov-Shatashvili limit of the N=2 supersymmetric gauge
theory and topological string theory on certain local toric Calabi-Yau
manifolds. In this limit one of the two deformation parameters \epsilon_{1,2}
of the Omega background is set to zero and we study the perturbative expansion
of the topological amplitudes around the remaining parameter. We derive
differential equations from Seiberg-Witten curves and mirror geometries, which
determine the higher genus topological amplitudes up to a constant. We show
that the higher genus formulae previously obtained from holomorphic anomaly
equations and boundary conditions satisfy these differential equations. We also
provide a derivation of the holomorphic anomaly equations in the
Nekrasov-Shatashvili limit from these differential equations.Comment: 41 pages, no figure. v2: references adde
Hydroacoustic forcing function modeling using DNS database
A wall pressure frequency spectrum model (Blake 1971 ) has been evaluated using databases from Direct Numerical Simulations (DNS) of a turbulent boundary layer (Na & Moin 1996). Good agreement is found for moderate to strong adverse pressure gradient flows in the absence of separation. In the separated flow region, the model underpredicts the directly calculated spectra by an order of magnitude. The discrepancy is attributed to the violation of the model assumptions in that part of the flow domain. DNS computed coherence length scales and the normalized wall pressure cross-spectra are compared with experimental data. The DNS results are consistent with experimental observations
Twisted Masses and Enhanced Symmetries: the A&D Series
We study new symmetries between A and D type quiver gauge theories with
different numbers of colors. We realize these gauge theories with twisted
masses via a brane construction that reproduces all the parameters of the
Gauge/Bethe correspondence.Comment: 14 pages, 5 figure
TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)
Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT.
Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA.
Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes.
Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon
Above-Room-Temperature Ferromagnetism in GaSb/Mn Digital Alloys
Digital alloys of GaSb/Mn have been fabricated by molecular beam epitaxy.
Transmission electron micrographs showed good crystal quality with individual
Mn-containing layers well resolved; no evidence of 3D MnSb precipitates was
seen in as-grown samples. All samples studied exhibited ferromagnetism with
temperature dependent hysteresis loops in the magnetization accompanied by
metallic p-type conductivity with a strong anomalous Hall effect (AHE) up to
400 K (limited by the experimental setup). The anomalous Hall effect shows
hysteresis loops at low temperatures and above room temperature very similar to
those seen in the magnetization. The strong AHE with hysteresis indicates that
the holes interact with the Mn spins above room temperature. All samples are
metallic, which is important for spintronics applications.
* To whom correspondence should be addressed. E-mail: [email protected]
A consistent picture for large penguins in D -> pi+ pi-, K+ K-
A long-standing puzzle in charm physics is the large difference between the
D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF
collaborations reported a surprisingly large difference between the direct CP
asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are
naturally related in the Standard Model via s- and d-quark "penguin
contractions". Their sum gives rise to Delta A_CP, while their difference
contributes to the two branching ratios with opposite sign. Assuming nominal
SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay
rates yields large penguin contractions that naturally explain Delta A_CP.
Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure
- …