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Hydroacoustic forcing function
modeling using DNS database

By I. Zawadzki 1, J. L. Gershfeld 1, Y. Na 2 AND M. Wang 3

A wall pressure frequency spectrum model (Blake 1971) has been evaluated using

databases from direct numerical simulations (DNS) of a turbulent boundary layer

(Na & Moin 1996). Good agreement is found for moderate to strong adverse pres-

sure gradient flows in the absence of separation. In the separated flow region, the

model underpredicts the directly calculated spectra by an order of magnitude. The

discrepancy is attributed to the violation of the model assumptions in that part of

the flow domain. DNS computed coherence length scales and the normalized wall

pressure cross-spectra are compared with experimental data. The DNS results are

consistent with experimental observations.

1. Introduction

Understanding the physics of the interaction of the airfoil turbulent boundary lay-

ers incident to the trailing edge is of interest to the designers of practical airframe

components and lifting surfaces. Flow at trailing edges involves complex phenom-

ena including adverse pressure gradient effects, flow separation, vortex shedding,

and pressure scattering at the edge boundary discontinuity. It is not surprising

then, that even an approximate treatment of practical cases, particularly from the

vantage point of sound generation, encounters serious difficulties. Inviscid flow the-

ories that capture the purely acoustic interaction of the flow with the trailing edge

have been developed (Howe 1978,1988). Several experiments have also been per-

formed (Brooks & Hodgson 1981, Blake 1986) which shed some light on the physics

of the viscous flow problem. Vv'ell designed experimental efforts are invaluable in

improving our understanding of the phenomena as demonstrated by Gershfeld et

al. (1988) and Blake _z Gershfeld (1989). They are, however, limited in terms

of providing global information about the flow. One of the principal weaknesses

of the experimental estimations of the flow acoustic source terms is that they are

essentially ad hoc. The experimentalist must assume a priori which of the several

potential flow acoustic sources are relevant so that estimates of the dipole source

strength may be made. It is only when the direct dipole sound field is measured

that the empirical estimates of the forces associated with the direct dipoles can

be determined to be relevant. Unfortunately, there have been very few success-

ful measurements of the trailing edge direct dipole sound field. When the inviscid
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turbulent flow dipole sound formulations of Howe ( 1978, 1988) are applied with a

Kutta condition, the predicted dipole sound field does not agree with experimen-

tal data (Brooks & Hodgson 1981). Only when tile Kutta condition is removed

does his model agree. Viscous DNS calculations may add insight into this modeling

dilemma. The advantage of flow databases obtained by means of numerical simu-

lations is that they contain spatial and temporal data throughout the flow domain

which is not attainable in laboratory experiments.

Trailing edge flows of interest often include both attached and separated flow

regimes (Brooks &: Hodgson 1981, Blake 1984). With that in mind, we utilize the

numerical database developed by Na & Moin (1996). Since the database includes

flow with adverse pressure gradient and separation, it was well suited as a first

step towards modeling of the more complex flow - trailing edge interactions. Our

goals were two-fold. First, we wanted to re-examine the database from the point

of view of an aeroacoustieian to complement the results already presented by Na

& Moin. (There is a certain degree of skepticism among the applied community'

as to whether relatively low Reynolds number DNS calculations can be of use for

predicting high Reynolds number flows found in practical realizations. Wall pressure

spectra reported by Na & Moin show many features and trends observed in the

experiments, a hint that DNS calculations are, in fact. relevant.) Our second goal

was to revisit a wall pressure model developed long before there were means of

reliably assessing its accuracy or limits of applicability. DNS database provides

such means since it contains both the complete flow data necessary for the input to

the model as well as directly calculated wall pressures which can be used to verify

or invalidate the model predictions.

2. Wall pressure model

In the following sections x, y, and z (or xi, i = 1,2, 3) will denote the streamwise,

wall-normal, and spanwise coordinate, respectively, while u, v, u, (or ui, i = 1,2, 3)

will be the corresponding fluctuating velocity components. Other quantities pertain-

ing to a given coordinate direction will carry an appropriate coordinate subscript

(e.g. k_ is the streamwise component of the wave-number vector k). For an in-

compressible flow invoking the usual boundary layer approximation, evaluation of

pressure can be reduced to solving the Poisson's equation (see, for example, Blake
1986)

Ov OU(x, t) O'eu,uj

V:_p(x, t) = -2p00x Oy po Ox,Oxj ( 1 )

where U is the mean streamwise velocity. Lilley (1960) derived a solution of Eq. (1)

in terms of the wave number frequency spectrum of the wall pressure,

(I)pp(k,_) - k2z + k2 dy dy e -(y+y ) kV/k_+_+k_r(y)r(!l )q)_,(y, y'; k,_), (2)

where k = (k_,k:) is the wave number vector in the I)lane parallel to the wall,

is the mean shear, and rbv(y,y_; k,a:) is the cross-spectral density of
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the vertical velocity field. Equation (2) was derived under the assumption that the

second term on the right hand side of Eq. (1) is negligible compared with the first

term, and that the source field is spatially homogeneous in the (kx,k:) plane. Blake

(1971) further modified Lilley's solution by introducing a separable model for the
vertical velocity spectrum:

¢_(y,y';k,w) = -_(y)[Ivv(y,y )¢v_,(k,)¢_(k:)¢m(w - k_U_). (3)

Here, v--i(y) is the mean square of vertical fluctuating velocity,/_/_v(y, y') is a normal-

ized correlation in the y-direction, Cr,,(W- k_Uc) is the moving axis spectrum, Uc is

the convection velocity, and ¢_(k_) and ¢_v(k:) are wave number spectra defined as
the Fourier transforms of, respectively, normalized streamwise and spanwise separa-

tion correlation functions of vertical velocity. (We use the lowercase symbol ¢ to de-

note the normalized spectrum functions. The normalization is: f_-_oo¢(ki)dki = 1.)

Using (3) Blake (1971) obtains the wall pressure frequency spectrum by integrat-
ing Eq. (2) with respect to the wave number components k_, k:. The final result
can be written in the form

/o /ocpp( ) = 4p 0 dy )Z( ,y,u'),

(4)
where

= oo

Taylor's hypothesis of frozen convection was used in the integration leading to Eq.

(4). Mathematically, the hypothesis states that ¢,,,(k_ - _-) = 6(k_: - _7)' which
leads to the following equivalence of the normalized wave number spectrum ¢_v(k_ )

and the frequency spectrum Cw(w):

(5)

In order to evaluate Eq. (4,4a) one needs to compute the vertical correlation

-_-_(y)l_(y,y'), the mean shear r(y), and the wave number spectra ¢_v(k_) and

¢,_(k_) (See discussion in sections 4.2 and 4.3 on selecting the location at which

the spectra should be evaluated). Calculation of these quantities from the DNS
database is a straightforward matter. We should point out that in principle one

could compute the cross-spectral density function fly(y, y_; k, w) without resorting to

the separable model (Eq. (3)) and integrate numerically Eq. (2) directly to obtain

the pressure frequency spectrum. Besides not being physically revealing, such a

procedure, however, would be prohibitively expensive in terms of computational

time and memory.
We should also point out the modeling described above is applicable only to

convective wave numbers near k_ = w/Uc. In other words, Eq. (4) does not

encompass sources outside of the convective range. Other models of wall pressure
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spectrum (Chase 1980) could be used to include broader range of wave numbers.

However, trailing edge noise is dominated by scattering of convective wall pressures

(with boundary discontinuity providing the conversion mechanism to acoustic wave

numbers - Howe (1979)). Therefore, from the standpoint of acoustic radiation,

Blake's simplified approach to computing the wall pressure spectrum should be
sufficient.

3. DNS database

Most of the data presented here (with the exception of Fig. 2a) will refer to

the separated flow calculation in the Na & Moin (1996) database. Following Na &

Moin, we introduce the non-dimensional variables given by

, ui . xi t* tU0 p, = p
= x, = - p- o (6)

where U0 is the mean velocity at inlet and 6i* is the (dimensional) inlet displace-

ment thickness. All quantities discussed in the following sections, including the

wave number and frequency spectra, incorporate this nondimensionalization. The

superscript *, denoting non-dimensional quantities, has been dropped to simplify
notation.

In order to establish for the reader the reference coordinates for different flow

regimes, the mean streamlines were reproduced in Fig. 1.
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FIGURE 1.
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Mean flow streamlines.

In non-dimensional units (Eq. 6) the streamwise and spanwise extent of the

computational domain is, respectively, 350 and 50. The vertical height is 64. Flow

separation is induced by prescribing suction-blowing velocity profile along the upper

boundary. As a result, strong adverse pressure gradient exists between the non-

dimensional coordinates x = 90 and x = 150. Boundary layer separation occurs

around x = 160. Coordinate x = 220 corresponds to the center of the separation

bubble. Grid resolution is 513 × 193 x 129 points in the streamwise, wall-normal, and

spanwise directions, respectively. The Reynolds number based on inlet momentum

thickness and free-stream inlet velocity is 300. For additional details of the flow

calculations, including description of the computational method, we refer the reader

to Na & Moin (1996).
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4. Results and discussion

4.1 Wall pressure data analysis

Standard tools of correlation analysis were utilized to analyze the DNS calculated

wall pressure data. We wanted to establish whether DNS results, which are obtained

for a relatively low Reynolds number, are in agreement with experimental data. The

comparisons also served to validate our numerous computer codes. Let r = (rr, rz)

be a separation vector in a plane parallel to the wall. Defining the cross-correlation

function of a field quantity q as an ensemble average,

Rqq(X,r,v) = (q'(x,t)q'(x + r,t + r)), (7)

the cross spectrum function is the Fourier transform of (7) with respect to the time

delay:

/;q_qq(X, r, w) = Rqq(X, r, r)e-i'_dr. (8)
oo

Coherence is defined as the cross spectrum squared, normalized by the local au-

tospectrum:
['I'qq(X, r, _)[ 2

72(x'r'w) = t_qq(X,O,_.d)l]_qq(X "_ r, 0,w)[" (9)

The Corcos (1963) model of the cross-spectrum of the wall pressure, p, has the form

,,_r 03rz

 ,rx B(
O,p(r_,rz,w) = O(w)A(-_c )e -_c ),

(10)

with A and B modeled as exponentially decaying functions. These functions are

calculated by expressing the square root of the coherence (Eq. 9) in terms of the

similarity variable wr/Uc. The results for the streamwise component are shown in

Fig. 2.
As a reference, the results for the zero pressure gradient flow, obtained using

a separate DNS database (Na & Moin 1996, Chapter 3), are plotted in Fig. 2a.

They are closely described by the experimentally observed exponential function

with decay constant a = -0.125 (Brooks _z Hodgson 1981). Abraham & Keith

(1995) report similar agreement with the experimental results for DNS simulated

turbulent channel flow. When an adverse pressure gradient is present, however, the

streamwise coherence curves decay at a much fa_ter rate (Fig. 2b) and the Corcos

constant has to be altered. A reasonable fit is obtained with a decay constant

a = 0.4. This trend is in agreement with the observations of Schloemer (1967). We

evaluated the Corcos "A" function for several streamwise locations corresponding

to varying degree of pressure gradient and found that the decay constant increases

monotonically with the pressure gradient.

By contrast, we found the rate of decrease for the spanwise Corcos similarity

function "B" to be practically independent of the pressure gradient. As shown in

Fig. 3a, the results at x = 120 agree reasonably with the experimentally observed

exponential rate of decrease b = -0.7. The situation changes dramatically, however,
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× 1.1; -- e -°125''=/Uc. (b) Adverse pressure gradient flow at x = 120; aJ =
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FIGURE 3. Spanwise coherence in Corcos similarity form. (a) x = 120, (b) x = 220;

for selected values of frequency: • 0.21, • 0.42, v 0.59, o 0.8, = 1.0; -- e-°'_=/vc .

when the function is evaluated inside the separation bubble (Fig. 3b). All the

curves stay very close to a constant value of unity which demonstrates that the wall

pressure in the separated flow region is essentially two-dimensional.

Another experimentally measurable characteristic of the wall pressure is given by

the frequency dependent streamwise and spanwise length scales. These are obtained

by calculating the coherence for a suitably chosen separation vector and integrating
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the result over the separation distance. For example, the spanwise length scale is

given by:

hz(x,03) = v  2(x, rz,03)drz (11)

where rz is the spanwise separation distance. Gershfeld et al. (1988) have calcu-

lated both spanwise and streamwise coherence length scales for their trailing edge

measurements which included adverse pressure gradient effects. They have assumed

the Corcos relation: A = C v and proceeded to calculate the proportionality con-
_aJ

stant C for varying flow conditions. They have found the constant value to range

between 0.5 and 1.5 for the spanwise length scales and between 1.75 and 6.0 for the

streamwise length scales. Figure 4 shows that the DNS calculated length scales fall

within the range observed by Gershfeld et al.
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One of the quantities required for the integrand of Eq. (4) is the two-point

correlation of vertical velocity. Hunt et al. (1987) have demonstrated that for

boundary layer flows the normalized correlation has an approximately self-similar

form when expressed as a function of y/y', (0 < y < y'). In Fig. 5 we plot the

correlation with the normalization as prescribed by Hunt et al.

In the attached region (Fig. 5a) the self-similarity can be clearly observed for

values of yt up to 4. At the streamwise location where the correlation in Fig. 5a

was calculated (x = 80), the y' -- 8 position lies too close to the boundary layer

edge so the self-similarity is not expected to be preserved there. On the other hand,

at the center of the separation bubble the boundary layer thickness is much larger

than 8, and as a result none of the curves plotted in Fig. 5b shows drastic departure

from the other curves. However, the collapse is not as good as for the first four y-

locations in Fig. 5a. This is not surprising as the flow in the separated region does

not at all resemble a typical boundary layer profile.
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4.2 Discussion of the wall pressure model assumptions

For the sake of completeness we list the assumptions made in deriving the wall

pressure model Eq. (4):

1 Boundary layer approximation.

2 Spatial homogeneity of the source term in the planes parallel to the wall.

3 Dominance of the linear source term over the nonlinear part.

4 Spatial localization (in the wall-normal direction) of the sources.

5 Spectral separability of the source field.

6 Taylor's hypothesis of frozen convection.

Assumption I is readily satisfied before the flow separation. This allows neglecting

certain terms when deriving the Eq. (1). In the separated region, instantaneous

velocity vector plots (Na & Moin 1996, Fig 5.14) show very small velocity vectors

with frequent flow reversal in the region between the wall and the separated shear

layer. Therefore, in this region the boundary layer approximation, which presumes

preferable mean flow direction with the streamwise component being much larger

than the other components, is no longer valid.

Assumption of spatial homogeneity is implicit in expressing the pressure and

velocity fields in terms of wave number spectra (Eqs. (2) and (3)). Strictly speaking

one cannot expect to find homogeneity in the streamwise direction in a spatially

developing flow. All we can hope for is for the flow to be "locally homogeneous", in

the sense that the streamwise variation is locally small enough so that computing

the ensemble average (Eq. 7) and taking the Fourier transform with respect to the

streamwise separation is physically meaningful at least for a certain range of the

wave numbers. Figure 6 shows one of the diagnostics of the spatial homogeneity.

It shows two-point streamwise separation correlation contours of the wall pressure.

One can see that up to the point of separation (x < 150) and inside the separated
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region (190 < x < 260), the field is nearly homogeneous (contour lines are nearly

parallel to the abscissa). In the vicinity of the separation point, (150 < x < 190)

the correlation function is strongly dependent on the streamwise location.
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FIGURE 6. Wall pressure two-point streamwise separation correlation contours.

The next approximation - neglecting the nonlinear term in Eq. (1) - used to be

considered very plausible until the work of Kim (1989). Kim has demonstrated that

the contributions of both terms to the wall pressure are of comparable magnitude,

with the total pressure exceeding both the linear component's contribution by about

30 percent. Therefore, we expect Eq. (2) to underestimate the spectral levels of the

wall pressure.

Spatial localization of the sources is the key to representing the vertical velocity

spectrum via Eq. (3), which de-facto puts all the dependence on the y-coordinate in

the correlation term and makes the remaining terms independent of y. We plotted

the magnitude of the y-coordinate dependent part of the source term in Fig. 7.

One can see a clearly pronoanced peak very close to the wall for locations up-

stream of the separation bubble (Fig. 7a). At the detachment point (Fig. 7b,

x = 160), the height of the peak has decreased by an order of magnitude and its

effective width has become comparable with the thickness of the boundary layer.

In the center of the separated region (x = 220), the maximum of the source term

has moved away from the wall to coincide with the location of the shear layer and

the peak has become even broader. In the reattachment region (x = 280), a new

maximum begins to reappear near the wall.

The assumption of spectral separability states that the wave number spectrum

in the plane parallel to the wall can be expressed as a product of two functions,

each dependent on, respectively, only the streamwise and spanwise wave number

component. It is a convenient tool which allows obtaining the final result (Eq.

(4)) in a simple form. In principle, one could compute the exact two-dimensional

spectrum by calculating two-point correlation for all possible pairs of streamwise and

spanwise separations and taking two-dimensional Fourier transform of the result.
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We have not performed such calculations and, therefore, cannot comment on the

errors incurred by using the separable representation.

The last approximation, the Taylor's hypothesis of frozen convection, can be

tested by calculating and comparing the spectra in Eq. (5). Before making the

comparison, one must choose a proper value for the convection velocity Uc. A

natural choice is the local mean velocity. The normalized spectra calculated in the

y = 0.76 plane at two selected streamwise locations, x = 80 and x = 130, are shown

in Fig. 8a,8b. The local mean velocity Utocat at these coordinates is, respectively,
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0.56 and 0.29. Clearly, with this choice of Uc = UIocat, the spectra agree very well

even when evaluated at the location with a severe local adverse pressure gradient

(Fig. 85).

4.3 Comparison of model predictions with DNS data

The model predictions are calculated by numerically integrating (4). The integra-

tion is straightforward once all the ingredients of the integrand are known. There

are, however, issues concerning the determination of the convection velocity Uc

and the wavenumber spectra ¢_v(kx) and (I)vZv(kz) in the integrand, which deserve
a brief discussion.

Using the wall pressure convection velocity inferred from time-space correlations

calculated by Na & Moin would not be compatible with the spirit of this work. One

would prefer to rely exclusively on the velocity field data and not to use any variable

that is a characteristic of the quantity that we are trying to predict. With regard to

the normalized velocity wavenumber spectra, one expects them to be independent

of y, since the y-dependence has been included in the vertical correlation function

in the separable representation (3). Under this premise it appears reasonable to

pick a single constant-y plane and take the ¢_v(kx) and _v(kz) there as the rep-

resentative wavenumber spectra required in (4). The convective velocity Uc can be

approximated by the local mean velocity, as demonstrated by Fig. 8. Ideally, one

would prefer the selected y-plane to coincide with the location of maximum source

magnitude, as the contribution from the vicinity of the source peak is expected to

dominate over contributions from all other locations (Blake 1984). (Of course, the

notion that the maximum source magnitude contributes most to the wall pressure is

valid only when the shear layer is close enough to the wall. Otherwise, the effects of

the exponential factor in Eq. (4a) may become significant). However, the difference

should be small even if the selected plane deviates from the source peak, so long as

it lies within the active source region where the separable representation (3) holds.

In the present calculations, the vertical-velocity wavenumber spectra are approxi-

mated by those at y ,_ 0.76 for the streamwise stations x = 80 and 120, y = 7.07 for

x = 160, and y = 19.67 for x = 220. Our choices of the y-planes are limited by the

available DNS data (there are only five y-planes with complete space-time velocity

information saved in the original DNS database). The Uc value is approximated

by the local mean velocity at the given (x, y)-position.

The model predictions at four different streamwise locations, representing differ-

ent flow regimes, are shown in Figs. 9 and 10. The directly computed pressure

spectra are also plotted for comparison. In the attached flow region at x = 80 (Fig.

9a) and x = 120 (Fig. 9b), the agreement between model and DNS is very good.

The under-prediction at low frequencies may be attributed to neglecting the non-

linear terms in Eq. (1). Considering that the contributions from the retained and

neglected term are of comparable magnitude (Kim 1989), and given the approxi-

mations involved in the evaluation of the integrand, a discrepancy (underestimate)

should be expected.

At the flow separation point x = 160 (Fig. 10a) familiar underprediction at low

frequencies is again observed. There is also a marked difference at the high end of
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the frequency spectrum (compare solid and dashed lines in Fig. 10). One possible

reason for the "misalignment" of the spectra could be an improper choice (restricted
kby the limited available data) of the representative wavenmnber spectrum (I)w, (,)

and the corresponding convection velocity Uc. Indeed, if we use the y _ 2.28

plane instead of our first choice y = 7.07, the model spectrum shifts towards lower

frequencies (Fig. 10a). These results seem to confirm that the optimum choice

would be y m 5, i.e. near the location of the peak of the source term (el Fig. 7b).

In the separated region (Fig. 10b), the model and DNS results differ by more

than an order of magnitude. As discussed in section 4.2 the model failure may be
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attributed to the fact that the nature of the flow in this regime is largely incompat-

ible with the model assumptions. For the model to perform well, the wall pressure

has to be the signature of a spectrally separable source localized in the y-direction

(cf. (3)), moving at a constant speed. This condition is violated, given the large

vertical extent and the wide range of flow characteristics in the separated zone.

The exponential decay of the Green's function (el Eq. 4a) accentuates the contri-

bution of the eddies closer to the wall than the detached shear layer, particularly

in the high frequency range. In other words, less energetic eddies may compete,

in terms of their contribution to the wall pressure, with higher intensity sources

depending on their relative proximity to the wall. For the separated flow, therefore,

a "representative" source y-layer with a single convective velocity is difficult, if not

impossible, to identify.

5. Conclusions and future work

There is an ongoing need for an accurate prediction of wall pressure spectrum

in aeroacoustic engineering applications. Since current computational capabilities

cannot provide the necessary space and time resolution for computing the pressure

spectrum directly (for the Reynolds numbers of interest), appropriate models have

to be utilized. In this project we have demonstrated that a simplified model de-

veloped for a flat plate turbulent boundary layer can be used for predicting wall

pressure frequency spectrum of a flow with a strong adverse pressure gradient. In

practical cases RANS calculations could provide the mean shear and wall-normal

turbulence intensity required by the model. Hunt et al's. (1987) similarity model

can be used for the correlation function of vertical velocity. The wave number spec-

tra of vertical velocity, also needed as input to the model, can be calculated from

experimental two-point correlation flow measurement.

Our results also show that in the separated region the model's performance is

unsatisfactory. It is perhaps premature to assume that the model would fail for

any separated flow scenario. From the exponential form of the Green's function in

Eq. (4a), it is apparent that the contribution of the shear layer as a source term

of the wall pressure rapidly diminishes with the distance from the wall. Therefore,

the accuracy of the model's prediction should depend on the distance between the

shear layer and the wall as well as on the strength of the shear layer relative to

the turbulence level in the separation bubble. In any event, the non-linear pressure

source terms need to be included in order to obtain accurate wall pressure spectrum

predictions for a broad class of separated flows.

We plan to use the experience gained during the course of this work as a stepping

stone towards modeling, with the aid of DNS and LES simulations, of wall pressure

spectra of more complex trailing edge flows.
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