46 research outputs found

    Renal infarction resulting from traumatic renal artery dissection

    Get PDF
    Renal artery dissection may be caused by iatrogenic injury, trauma, underlying arterial diseases such as fibromuscular disease, atherosclerotic disease, or connective tissue disease. Radiological imaging may be helpful in detecting renal artery pathology, such as renal artery dissection. For patients with acute, isolated renal artery dissection, surgical treatment, endovascular management, or medical treatment have been considered effective measures to preserve renal function. We report a case of renal infarction that came about as a consequence of renal artery dissection

    Quantitation of BK Virus DNA for Diagnosis of BK Virus-Associated Nephropathy in Renal Transplant Recipients

    Get PDF
    Quantitative measurement of BK virus DNA (Q-BKDNA) has been used for the early diagnosis and monitoring of BK virus-associated nephropathy (BKVAN). This study was designed to determine the BKDNA cutoff for the diagnosis of BKVAN. Between June 2005 and February 2007, 64 renal transplant recipients taken renal biopsies due to renal impairment submitted plasma and urine for Q-BKDNA. Eight BKVAN patients (12.5%) had median viral loads of 6.0 log10 copies/mL in plasma and 7.3 log10 copies/mL in urine. Among 56 non-BKVAN patients, 45 were negative for Q-BKDNA; 4 were positive in plasma with a median viral load of 4.8 log10 copies/mL, and 10 were positive in urine with a median viral load of 4.8 log10 copies/mL. Receiver operating characteristic curve analysis showed that a cutoff of 4.5 log10 copies/mL in plasma and a cutoff of 5.9 log10 copies/mL in urine had a sensitivity of 100% and a specificity of 96.4%, respectively. A combined cutoffs of 4 log10 copies/mL in plasma and 6 log10 copies/mL in urine had better performance with a sensitivity of 100% and a specificity of 98.2% than each cutoff of urine or plasma. Q-BKDNA with the combined cutoffs could reliably diagnose BKVAN in renal transplant recipients

    Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase I clinical trial

    Get PDF
    Backgrounds: Alzheimer's disease is the most common cause of dementia, and currently, there is no disease-modifying treatment. Favorable functional outcomes and reduction of amyloid levels were observed following transplantation of mesenchymal stem cells (MSCs) in animal studies. Objectives: We conducted a phase I clinical trial in nine patients with mild-to-moderate Alzheimer's disease dementia to evaluate the safety and dose-limiting toxicity of three repeated intracerebroventricular injections of human umbilical cord blood-derived MSCs (hUCB-MSCs). Methods: We recruited nine mild-to-moderate Alzheimer's disease dementia patients from Samsung Medical Center, Seoul, Republic of Korea. Four weeks prior to MSC administration, the Ommaya reservoir was implanted into the right lateral ventricle of the patients. Three patients received a low dose (1.0 × 107 cells/2 mL), and six patients received a high dose (3.0 × 107 cells/2 mL) of hUCB-MSCs. Three repeated injections of MSCs were performed (4-week intervals) in all nine patients. These patients were followed up to 12 weeks after the first hUCB-MSC injection and an additional 36 months in the extended observation study. Results: After hUCB-MSC injection, the most common adverse event was fever (n = 9) followed by headache (n = 7), nausea (n = 5), and vomiting (n = 4), which all subsided within 36 h. There were three serious adverse events in two participants that were considered to have arisen from the investigational product. Fever in a low dose participant and nausea with vomiting in another low dose participant each required extended hospitalization by a day. There were no dose-limiting toxicities. Five participants completed the 36-month extended observation study, and no further serious adverse events were observed. Conclusions: Three repeated administrations of hUCB-MSCs into the lateral ventricle via an Ommaya reservoir were feasible, relatively and sufficiently safe, and well-tolerated. Currently, we are undergoing an extended follow-up study for those who participated in a phase IIa trial where upon completion, we hope to gain a deeper understanding of the clinical efficacy of MSC AD therapy

    Identifying novel genetic variants for brain amyloid deposition: a genome-wide association study in the Korean population

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified a number of genetic variants for Alzheimer's disease (AD). However, most GWAS were conducted in individuals of European ancestry, and non-European populations are still underrepresented in genetic discovery efforts. Here, we performed GWAS to identify single nucleotide polymorphisms (SNPs) associated with amyloid β (Aβ) positivity using a large sample of Korean population. Methods: One thousand four hundred seventy-four participants of Korean ancestry were recruited from multicenters in South Korea. Discovery dataset consisted of 1190 participants (383 with cognitively unimpaired [CU], 330 with amnestic mild cognitive impairment [aMCI], and 477 with AD dementia [ADD]) and replication dataset consisted of 284 participants (46 with CU, 167 with aMCI, and 71 with ADD). GWAS was conducted to identify SNPs associated with Aβ positivity (measured by amyloid positron emission tomography). Aβ prediction models were developed using the identified SNPs. Furthermore, bioinformatics analysis was conducted for the identified SNPs. Results: In addition to APOE, we identified nine SNPs on chromosome 7, which were associated with a decreased risk of Aβ positivity at a genome-wide suggestive level. Of these nine SNPs, four novel SNPs (rs73375428, rs2903923, rs3828947, and rs11983537) were associated with a decreased risk of Aβ positivity (p < 0.05) in the replication dataset. In a meta-analysis, two SNPs (rs7337542 and rs2903923) reached a genome-wide significant level (p < 5.0 × 10-8). Prediction performance for Aβ positivity increased when rs73375428 were incorporated (area under curve = 0.75; 95% CI = 0.74-0.76) in addition to clinical factors and APOE genotype. Cis-eQTL analysis demonstrated that the rs73375428 was associated with decreased expression levels of FGL2 in the brain. Conclusion: The novel genetic variants associated with FGL2 decreased risk of Aβ positivity in the Korean population. This finding may provide a candidate therapeutic target for AD, highlighting the importance of genetic studies in diverse populations

    Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis

    Get PDF
    Clonorchis sinensis is the causative agent of the life-threatening disease endemic to China, Korea, and Vietnam. It is estimated that about 15 million people are infected with this fluke. C. sinensis provokes inflammation, epithelial hyperplasia, and periductal fibrosis in bile ducts, and may cause cholangiocarcinoma in chronically infected individuals. Accumulation of a large amount of biological information about the adult stage of this liver fluke in recent years has advanced our understanding of the pathological interplay between this parasite and its hosts. However, no developmental gene expression profiles of C. sinensis have been published. In this study, we generated gene expression profiles of three developmental stages of C. sinensis by analyzing expressed sequence tags (ESTs). Complementary DNA libraries were constructed from the adult, metacercaria, and egg developmental stages of C. sinensis. A total of 52,745 ESTs were generated and assembled into 12,830 C. sinensis assembled EST sequences, and then these assemblies were further categorized into groups according to biological functions and developmental stages. Most of the genes that were differentially expressed in the different stages were consistent with the biological and physical features of the particular developmental stage; high energy metabolism, motility and reproduction genes were differentially expressed in adults, minimal metabolism and final host adaptation genes were differentially expressed in metacercariae, and embryonic genes were differentially expressed in eggs. The higher expression of glucose transporters, proteases, and antioxidant enzymes in the adults accounts for active uptake of nutrients and defense against host immune attacks. The types of ion channels present in C. sinensis are consistent with its parasitic nature and phylogenetic placement in the tree of life. We anticipate that the transcriptomic information on essential regulators of development, bile chemotaxis, and physico-metabolic pathways in C. sinensis that presented in this study will guide further studies to identify novel drug targets and diagnostic antigens

    Electrical responses of short-channel organic transistor prepared by solution-processed organic crystal wire mask

    No full text
    We report a formation of a solution-grown single crystal wire mask for the fabrication of short-channel organic field-effect transistor with enhanced dynamic response time. The various channel length, ranging from submicrometer to a few micrometers, were obtained by controlling the concentration of solution and processing conditions. We fabricated p-and n-channel bottom-contact organic field-effect transistors using pentacene and PTCDI-C-13, respectively, and static and dynamic electrical characteristics of the devices were investigated. The highest and average field-effect hole mobility values were found to be 0.892 cm(2)/V s and 0.192 cm(2)/V s, respectively. The load type inverter based on the short-channel transistor connected with a 2 M Omega resistor showed a clear switching response when square wave input signals up to 1 kHz were applied at V-DD = -60 V. (C) 2014 Elsevier B.V. All rights reserved
    corecore