3 research outputs found

    Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia

    Get PDF
    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended

    Spatial Assessment of Heavy Metals in Surface Soil from Klang District (Malaysia): An Example from a Tropical Environment

    No full text
    Heavy metals (Al, Cd, Co, Cr, Cu, Fe, Pb, Zn) in surface soil of Klang district were determined and multivariate analysis was used to understand their potential sources. The total and bioavailability of concentrations were used in identifying the potential risks to the ecology and human health. The means for the total heavy metal concentrations were found to be in the order of Fe > Al > Zn > Pb > Cu > Cr > Co > Cd, while the means for the bioavailability concentrations were found to be in the order of Al > Fe > Zn > Cu > Co > Cd > Pb > Cr. Principal Component Analysis showed Principal Component 1 as being of natural origin whereas Principal Components 2, 3, and 4 were associated with mixed anthropogenic sources, such as traffic and industrial emissions, organic matter, and granulometric fractions. Potential ecological risk assessment indicated an overall low ecological risk. Spatial assessment of non-carcinogenic risks showed that the Hazard Index values were more than one in Johan Setia, due to biomass burning of peat swamps exploited for agricultural development. While for spatial assessment of carcinogenic risks, the Lifetime Cancer Risk values were in the limit (1 × 10−5), indicating low cancer inducing risks. Nevertheless, with intense development pressure in the Klang district could overlap pollution inputs in the future
    corecore