263 research outputs found

    Direct observation of incommensurate magnetism in Hubbard chains

    Get PDF
    The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves with a wave vector that does not match the reciprocal lattice. In one dimension this effect is a hallmark of Luttinger liquid theory, which also describes the low energy physics of the Hubbard model. Here we use a quantum simulator based on ultracold fermions in an optical lattice to directly observe such incommensurate spin correlations in doped and spin-imbalanced Hubbard chains using fully spin and density resolved quantum gas microscopy. Doping is found to induce a linear change of the spin-density wave vector in excellent agreement with Luttinger theory predictions. For non-zero polarization we observe a decrease of the wave vector with magnetization as expected from the Heisenberg model in a magnetic field. We trace the microscopic origin of these incommensurate correlations to holes, doublons and excess spins which act as delocalized domain walls for the antiferromagnetic order. Finally, when inducing interchain coupling we observe fundamentally different spin correlations around doublons indicating the formation of a magnetic polaron

    Tracking the Feeding Patterns of Tsetse Flies (Glossina Genus) by Analysis of Bloodmeals Using Mitochondrial Cytochromes Genes

    Get PDF
    Tsetse flies are notoriously difficult to observe in nature, particularly when populations densities are low. It is therefore difficult to observe them on their hosts in nature; hence their vertebrate species can very often only be determined indirectly by analysis of their gut contents. This knowledge is a critical component of the information on which control tactics can be developed. The objective of this study was to determine the sources of tsetse bloodmeals, hence investigate their feeding preferences. We used mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) gene sequences for identification of tsetse fly blood meals, in order to provide a foundation for rational decisions to guide control of trypanosomiasis, and their vectors. Glossina swynnertoni were sampled from Serengeti (Tanzania) and G. pallidipes from Kenya (Nguruman and Busia), and Uganda. Sequences were used to query public databases, and the percentage identities obtained used to identify hosts. An initial assay showed that the feeds were from single sources. Hosts identified from blood fed flies collected in Serengeti ecosystem, included buffaloes (25/40), giraffes (8/40), warthogs (3/40), elephants (3/40) and one spotted hyena. In Nguruman, where G. pallidipes flies were analyzed, the feeds were from elephants (6/13) and warthogs (5/13), while buffaloes and baboons accounted for one bloodmeal each. Only cattle blood was detected in flies caught in Busia and Uganda. Out of four flies tested in Mbita Point, Suba District in western Kenya, one had fed on cattle, the other three on the Nile monitor lizard. These results demonstrate that cattle will form an integral part of a control strategy for trypanosomiasis in Busia and Uganda, while different approaches are required for Serengeti and Nguruman ecosystems, where wildlife abound and are the major component of the tsetse fly food source

    A Naturally Occurring Polymorphism at Drosophila melanogaster Lim3 Locus, a Homolog of Human LHX3/4, Affects Lim3 Transcription and Fly Lifespan

    Get PDF
    Lim3 encodes an RNA polymerase II transcription factor with a key role in neuron specification. It was also identified as a candidate gene that affects lifespan. These pleiotropic effects indicate the fundamental significance of the potential interplay between neural development and lifespan control. The goal of this study was to analyze the causal relationships between Lim3 structural variations, and gene expression and lifespan changes, and to provide insights into regulatory pathways controlling lifespan. Fifty substitution lines containing second chromosomes from a Drosophila natural population were used to analyze the association between lifespan and sequence variation in the 5′-regulatory region, and first exon and intron of Lim3A, in which we discovered multiple transcription start sites (TSS). The core and proximal promoter organization for Lim3A and a previously unknown mRNA named Lim3C were described. A haplotype of two markers in the Lim3A regulatory region was significantly associated with variation in lifespan. We propose that polymorphisms in the regulatory region affect gene transcription, and consequently lifespan. Indeed, five polymorphic markers located within 380 to 680 bp of the Lim3A major TSS, including two markers associated with lifespan variation, were significantly associated with the level of Lim3A transcript, as evaluated by real time RT-PCR in embryos, adult heads, and testes. A naturally occurring polymorphism caused a six-fold change in gene transcription and a 25% change in lifespan. Markers associated with long lifespan and intermediate Lim3A transcription were present in the population at high frequencies. We hypothesize that polymorphic markers associated with Lim3A expression are located within the binding sites for proteins that regulate gene function, and provide general rather than tissue-specific regulation of transcription, and that intermediate levels of Lim3A expression confer a selective advantage and longer lifespan

    Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria)

    Get PDF
    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution

    Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling

    Get PDF
    Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes

    Men and Women Exhibit a Differential Bias for Processing Movement versus Objects

    Get PDF
    Sex differences in many spatial and verbal tasks appear to reflect an inherent low-level processing bias for movement in males and objects in females. We explored this potential movement/object bias in men and women using a computer task that measured targeting performance and/or color recognition. The targeting task showed a ball moving vertically towards a horizontal line. Before reaching the line, the ball disappeared behind a masking screen, requiring the participant to imagine the movement vector and identify the intersection point. For the color recognition task, the ball briefly changed color before disappearing beneath the mask and participants were required only to identify the color shade. Results showed that targeting accuracy for slow and fast moving balls was significantly better in males compared to females. No sex difference was observed for color shade recognition. We also studied a third, dual attention task comprised of the first two, where the moving ball briefly changed color randomly just before passing beneath the masking screen. When the ball changed color, participants were required only to identify the color shade. If the ball didn't change color, participants estimated the intersection point. Participants in this dual attention condition were first tested with the targeting and color tasks alone and showed results that were similar to the previous groups tested on a single task. However, under the dual attention condition, male accuracy in targeting, as well as color shade recognition, declined significantly compared to their performance when the tasks were tested alone. No significant changes were found in female performance. Finally, reaction times for targeting and color choices in both sexes correlated highly with ball speed, but not accuracy. Overall, these results provide evidence of a sex-related bias in processing objects versus movement, which may reflect sex differences in bottom up versus top-down analytical strategies

    A Novel Protein Isoform of the Multicopy Human NAIP Gene Derives from Intragenic Alu SINE Promoters

    Get PDF
    The human neuronal apoptosis inhibitory protein (NAIP) gene is no longer principally considered a member of the Inhibitor of Apoptosis Protein (IAP) family, as its domain structure and functions in innate immunity also warrant inclusion in the Nod-Like Receptor (NLR) superfamily. NAIP is located in a region of copy number variation, with one full length and four partly deleted copies in the reference human genome. We demonstrate that several of the NAIP paralogues are expressed, and that novel transcripts arise from both internal and upstream transcription start sites. Remarkably, two internal start sites initiate within Alu short interspersed element (SINE) retrotransposons, and a third novel transcription start site exists within the final intron of the GUSBP1 gene, upstream of only two NAIP copies. One Alu functions alone as a promoter in transient assays, while the other likely combines with upstream L1 sequences to form a composite promoter. The novel transcripts encode shortened open reading frames and we show that corresponding proteins are translated in a number of cell lines and primary tissues, in some cases above the level of full length NAIP. Interestingly, some NAIP isoforms lack their caspase-sequestering motifs, suggesting that they have novel functions. Moreover, given that human and mouse NAIP have previously been shown to employ endogenous retroviral long terminal repeats as promoters, exaptation of Alu repeats as additional promoters provides a fascinating illustration of regulatory innovations adopted by a single gene

    RISCI - Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>The availability of multiple whole genome sequences has facilitated <it>in silico </it>identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, <it>in silico </it>subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects.</p> <p>Results -</p> <p>We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of <it>Mycobacterium tuberculosis </it>for IS 6100 insertion polymorphism.</p> <p>Conclusions -</p> <p>RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.</p
    • …
    corecore