239 research outputs found

    Removal of power-line interference from the ECG: a review of the subtraction procedure

    Get PDF
    BACKGROUND: Modern biomedical amplifiers have a very high common mode rejection ratio. Nevertheless, recordings are often contaminated by residual power-line interference. Traditional analogue and digital filters are known to suppress ECG components near to the power-line frequency. Different types of digital notch filters are widely used despite their inherent contradiction: tolerable signal distortion needs a narrow frequency band, which leads to ineffective filtering in cases of larger frequency deviation of the interference. Adaptive filtering introduces unacceptable transient response time, especially after steep and large QRS complexes. Other available techniques such as Fourier transform do not work in real time. The subtraction procedure is found to cope better with this problem. METHOD: The subtraction procedure was developed some two decades ago, and almost totally eliminates power-line interference from the ECG signal. This procedure does not affect the signal frequency components around the interfering frequency. Digital filtering is applied on linear segments of the signal to remove the interference components. These interference components are stored and further subtracted from the signal wherever non-linear segments are encountered. RESULTS: Modifications of the subtraction procedure have been used in thousands of ECG instruments and computer-aided systems. Other work has extended this procedure to almost all possible cases of sampling rate and interference frequency variation. Improved structure of the on-line procedure has worked successfully regardless of the multiplicity between the sampling rate and the interference frequency. Such flexibility is due to the use of specific filter modules. CONCLUSION: The subtraction procedure has largely proved advantageous over other methods for power-line interference cancellation in ECG signals

    Relevance of Positron-Emission Therapy for Optimization of Treatment of Advanced Hodgkin’s Lymphoma Using Intensive ЕАСОРР-14 Program

    Get PDF
    Aim. To evaluate the relevance of the positron-emission therapy (PET) for optimization of the therapy of advanced Hodgkin’s lymphoma (HL) using the intensive EACOPP-14 program. Materials & Methods. 91 patients with advanced HL (IIX–IIE, III–IV) received the treatment according to the “ЛХМосква1-3” protocol over the period from November 2009 to February 2015, and then the treatment was analyzed. The median age was 29 years (range: 17–50); there were 42 men (46.3 %) and 49 (53.7 %) women. The treatment included 6 cycles of polychemotherapy according to the regimen ЕА(50)СОРР-14 ± radiation therapy. The radiation therapy was performed in 66 patients (72.5 %) after the completion of the chemotherapy. The cumulative focal dose was 30 Gy onto the areas of residual lesions and/or initially large tumor masses. Results. PET performed during the initial HL diagnosing permited to identify new areas of neoplastic lesions without changes in staging and treatment scheme, as well as specify areas and field size of planned radiation consolidation. The paper confirms the prognostic value of the intermediate PET in patients with advanced HL during the intensive first-line chemotherapy. The intensive therapy at the beginning of the treatment program is associated with higher chances for survival for patients with extremely unfavorable prognosis. After completion of the drug therapy, negative PET findings had a higher prognostic value, than the positive ones. The analysis of the relevance of residual tumor dimensions in the PET negative group demonstrated that the relapses were more common, if the residual tumor was more than 4.5 cm (according to CT findings). Conclusion. This study confirmed that it reasonable to discuss the discontinuation of the radiation therapy in patients with advanced HL, negative PET findings and small (< 2.5 cm) residual tumor after the intensive ЕАСОРР-14 program. This tactics permits avoiding a number of delayed complications

    Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation

    Get PDF
    A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development

    Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation

    Get PDF
    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.We thank Javier Salguero for help with animal experimentation and immunohistochemistry, Rocío Martín and Carolina Sánchez for technical assistance and Daniel Rubio for discussions on the project. This work was funded by Grants from the Spanish Ministry of Economy and Competitiviness and European Union (European Regional Development’s Funds, FEDER) (grant SAF2015-67485-R), and the Wellcome Trust (grant 051087/Z97/Z). M.B.R.-A. and A. Alejo were recipients of a Ramón y Cajal Contract from the Spanish Ministry of Science and Innovation

    Oxygen Consumption Can Regulate the Growth of Tumors, a New Perspective on the Warburg Effect

    Get PDF
    The unique metabolism of tumors was described many years ago by Otto Warburg, who identified tumor cells with increased glycolysis and decreased mitochondrial activity. However, "aerobic glycolysis" generates fewer ATP per glucose molecule than mitochondrial oxidative phosphorylation, so in terms of energy production, it is unclear how increasing a less efficient process provides tumors with a growth advantage.We carried out a screen for loss of genetic elements in pancreatic tumor cells that accelerated their growth as tumors, and identified mitochondrial ribosomal protein L28 (MRPL28). Knockdown of MRPL28 in these cells decreased mitochondrial activity, and increased glycolysis, but paradoxically, decreased cellular growth in vitro. Following Warburg's observations, this mutation causes decreased mitochondrial function, compensatory increase in glycolysis and accelerated growth in vivo. Likewise, knockdown of either mitochondrial ribosomal protein L12 (MRPL12) or cytochrome oxidase had a similar effect. Conversely, expression of the mitochondrial uncoupling protein 1 (UCP1) increased oxygen consumption and decreased tumor growth. Finally, treatment of tumor bearing animals with dichloroacetate (DCA) increased pyruvate consumption in the mitochondria, increased total oxygen consumption, increased tumor hypoxia and slowed tumor growth.We interpret these findings to show that non-oncogenic genetic changes that alter mitochondrial metabolism can regulate tumor growth through modulation of the consumption of oxygen, which appears to be a rate limiting substrate for tumor proliferation

    Space Division Multiplexing in Optical Fibres

    Full text link
    Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fibre. In this search, researchers have explored (and close to maximally exploited) every available degree of freedom, and even commercial systems now utilize multiplexing in time, wavelength, polarization, and phase to speed more information through the fibre infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibres can easily support hundreds of spatial modes, but today's commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals.Comment: to appear in Nature Photonic

    Prevalence of Influenza A viruses in wild migratory birds in Alaska: Patterns of variation in detection at a crossroads of intercontinental flyways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The global spread of the highly pathogenic avian influenza H5N1 virus has stimulated interest in a better understanding of the mechanisms of H5N1 dispersal, including the potential role of migratory birds as carriers. Although wild birds have been found dead during H5N1 outbreaks, evidence suggests that others have survived natural infections, and recent studies have shown several species of ducks capable of surviving experimental inoculations of H5N1 and shedding virus. To investigate the possibility of migratory birds as a means of H5N1 dispersal into North America, we monitored for the virus in a surveillance program based on the risk that wild birds may carry the virus from Asia.</p> <p>Results</p> <p>Of 16,797 birds sampled in Alaska between May 2006 and March 2007, low pathogenic avian influenza viruses were detected in 1.7% by rRT-PCR but no highly pathogenic viruses were found. Our data suggest that prevalence varied among sampling locations, species (highest in waterfowl, lowest in passerines), ages (juveniles higher than adults), sexes (males higher than females), date (highest in autumn), and analytical technique (rRT-PCR prevalence = 1.7%; virus isolation prevalence = 1.5%).</p> <p>Conclusion</p> <p>The prevalence of low pathogenic avian influenza viruses isolated from wild birds depends on biological, temporal, and geographical factors, as well as testing methods. Future studies should control for, or sample across, these sources of variation to allow direct comparison of prevalence rates.</p
    corecore