3,599 research outputs found

    Inventários corporativos das emissões de gases de efeito estufa da Embrapa Hortaliças dos anos de 2008, 2009, 2010 e 2011.

    Get PDF
    bitstream/item/84610/1/doc-139.pd

    Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties

    Full text link
    This paper reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 minutes of irradiation of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of Materials Scienc

    Evolution of ferroelastic domain walls during phase transitions in barium titanate nanoparticles

    Get PDF
    In this work, ferroelastic domain walls inside BaTiO3 (BTO) tetragonal nanocrystals are distinguished by Bragg peak position and studied with Bragg coherent x-ray diffraction imaging (BCDI). Convergence-related features of the BCDI method for strongly phased objects are reported. A ferroelastic domain wall inside a BTO crystal has been tracked and imaged across the tetragonal-cubic phase transition and proves to be reversible. The linear relationship of relative displacement between two twin domains with temperature is measured and shows a different slope for heating and cooling, while the tetragonality reproduces well over temperature changes in both directions. An edge dislocation is also observed and found to annihilate when heating the crystal close to the phase transition temperature

    Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction

    Get PDF
    The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned - making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 Ã… spatial resolution, and 0.22 Ã…-1 reciprocal-space resolution. Such high spatial-temporal resolution has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal resolution, and long-term stability of the apparatus are systematically characterized

    Toxicity of baits and their effects on population suppression of anastrepha fraterculus (diptera: tephritidae): implications for field management.

    Get PDF
    Anastrepha fraterculus (Wiedemann, 1830) is the main pest of fruit in southern Brazil. The use of toxic baits is one of the alternatives for its management. In this study, the toxic baits Anamed + malathion (10,000 mg/liter), Flyral 1.25% + malathion (2,000 mg/liter), and Gelsura (alpha-cypermethrin, 2,000 and 4,000 mg/liter) were highly toxic to the adults of A. fraterculus (lethal time [LT50] 90% mortality) on A. fraterculus adults up to 21 d after treatment (DAT). In the presence of 5, 25, and 50 mm of rainfall, there was a significant reduction in the residual effect over time. However, with up to 50 mm of rain, Anamed + malathion and Gelsura 2,000 and 4,000 mg/liter caused between 43.0 and 79.0% of mortality. In the field, during two consecutive seasons (2015/2016 and 2016/2017), applications of Gelsura 2,000 mg/liter (four applications/season) caused population suppression of the pest throughout the apple fruiting period. However, in the 2016/2017 season, in the area using Gelsura, a higher percentage (&#8776;12%) of apple fruits damaged by A. fraterculus females was observed when compared with the area with insecticide application (damage <3%). The toxic bait Gelsura (2,000 and 4.000 mg/liter) was shown to be promising for use in the management of A. fraterculus, with results similar to those with the application of synthetic insecticides. Key words: South American fruit fly, integrated pest management, rain effect, chemical contro

    Rehybridization dynamics into the pericyclic minimum of an electrocyclic reaction imaged in real-time

    Get PDF
    Electrocyclic reactions are characterized by the concerted formation and cleavage of both σ and π bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally.We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule α-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated π bonds. The σ bond dissociation largely happens after internal conversion from the pericyclicminimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general

    Early Universe Dynamics in Semi-Classical Loop Quantum Cosmology

    Full text link
    Within the framework of loop quantum cosmology, there exists a semi-classical regime where spacetime may be approximated in terms of a continuous manifold, but where the standard Friedmann equations of classical Einstein gravity receive non-perturbative quantum corrections. An approximate, analytical approach to studying cosmic dynamics in this regime is developed for both spatially flat and positively-curved isotropic universes sourced by a self-interacting scalar field. In the former case, a direct correspondence between the classical and semi-classical field equations can be established together with a scale factor duality that directly relates different expanding and contracting universes. Some examples of non-singular, bouncing cosmologies are presented together with a scaling, power-law solution.Comment: 14 pages, In Press, JCA

    Universal features in the growth dynamics of complex organizations

    Full text link
    We analyze the fluctuations in the gross domestic product (GDP) of 152 countries for the period 1950--1992. We find that (i) the distribution of annual growth rates for countries of a given GDP decays with ``fatter'' tails than for a Gaussian, and (ii) the width of the distribution scales as a power law of GDP with a scaling exponent β≈0.15\beta \approx 0.15. Both findings are in surprising agreement with results on firm growth. These results are consistent with the hypothesis that the evolution of organizations with complex structure is governed by similar growth mechanisms.Comment: 4 pages, 7 ps figures, using Latex2e with epsf rotate and multicol style files. Submitted to PR

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    Ceramic sonotrodes for light alloy melt treatment

    Get PDF
    Alloy melt treatment by ultrasonic vibration is a physical processing technique that has been gathering the support of the scientific community. The use of metallic sonotrodes for this purpose has been proven very efficient; however, it promotes melt inclusion by sonotrode erosion. Such an issue is being addressed by the use of ceramic sonotrodes in low-amplitude resonance. Given that these novel sonotrodes generally have complex shapes and low displacements, this study shows an innovative approach for their characterization. Based on scanning laser Doppler vibrometry, the signal processing Python-based script was used to map the overall resonant behavior of a tubular SiAlON sonotrode, and this route is able to characterize the complex shapes in low-amplitude and high-frequency radial resonance in resonant ceramic sonotrodes. Velocity time-domain profiles are shown to be dependent on the position, and even though the radial natural frequencies of ceramic sonotrodes have low amplitudes, they are proposed as an efficient tool for melt treatment. While characterizing the radial natural mode in ceramic sonotrodes, this study proves that their low-amplitude Lamb waves are responsible for the refinement of a-grains and secondary phases in light alloys.This work was supported by PTDC/EMEEME/30967/ 2017 and NORTE-0145-FEDER-030967, co-financed by the European Regional Development Fund (ERDF), through the Operational Programme for Competitive ness and Internationalization (COMPETE 2020), under Portugal 2020, and by the Fundação para a Cência e a Tecnologia – FCT I.P. national funds. Also, this work was supported by Portuguese FCT, under the reference project UIDB/04436/2020, and Stimulus of Scientific Employment Application CEECIND/03991/2017
    • …
    corecore