30 research outputs found

    Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.

    Get PDF
    Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ∼70,000 phosphoprotein and ∼260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.This work was supported by the National Institutes of Health National Cancer Institute (grant U54 CA112970 to J.W.G., G.B.M., S.M., and P.T.S.). S.M.H. and S.M. were supported by the UK Medical Research Council (unit program numbers MC_UP_1302/1 and MC_UP_1302/3). S.M. was a recipient of a Royal Society Wolfson Research Merit Award. The MD Anderson Cancer Center RPPA Core Facility is funded by the National Institutes of Health National Cancer Institute (Cancer Center Core Grant CA16672)

    Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection.

    Get PDF
    Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity

    Signal Peptide-Dependent Inhibition of MHC Class I Heavy Chain Translation by Rhesus Cytomegalovirus

    Get PDF
    The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC) expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference

    Сетевая система контроля технологического процесса выращивания полупроводниковых кристаллов и тонких пленок

    Get PDF
    Экспериментальное моделирование аппаратно-программного обеспечения показало достаточную надежность работы системы и значительное уменьшение трудоемкости контроля и управления параметрами технологического процесса

    Implementation of a publication strategy in the context of reporting biases. A case study based on new documents from Neurontin® litigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have documented strategies to promote off-label use of drugs using journal publications and other means. Few studies have presented internal company communications that discussed financial reasons for manipulating the scholarly record related to off-label indications. The objective of this study was to build on previous studies to illustrate implementation of a publication strategy by the drug manufacturer for four off-label uses of gabapentin (Neurontin®, Pfizer, Inc.): migraine prophylaxis, treatment of bipolar disorders, neuropathic pain, and nociceptive pain.</p> <p>Methods</p> <p>We included in this study internal company documents, email correspondence, memoranda, study protocols and reports that were made publicly available in 2008 as part of litigation brought by consumers and health insurers against Pfizer for fraudulent sales practices in its marketing of gabapentin (see <url>http://pacer.mad.uscourts.gov/dc/cgi-bin/recentops.pl?filename=saris/pdf/ucl%20opinion.pdf</url> for the Court’s findings).</p> <p>We reviewed documents pertaining to 20 clinical trials, 12 of which were published. We categorized our observations related to reporting biases and linked them with topics covered in internal documents, that is, deciding what should and should not be published and how to spin the study findings (re-framing study results to explain away unfavorable findings or to emphasize favorable findings); and where and when findings should be published and by whom.</p> <p>Results</p> <p>We present extracts from internal company marketing assessments recommending that Pfizer and Parke-Davis (Pfizer acquired Parke-Davis in 2000) adopt a publication strategy to conduct trials and disseminate trial findings for unapproved uses rather than an indication strategy to obtain regulatory approval. We show internal company email correspondence and documents revealing how publication content was influenced and spin was applied; how the company selected where trial findings would be presented or published; how publication of study results was delayed; and the role of ghost authorship.</p> <p>Conclusions</p> <p>Taken together, the extracts we present from internal company documents illustrate implementation of a strategy at odds with unbiased study conduct and dissemination. Our findings suggest that Pfizer and Parke-Davis’s publication strategy had the potential to distort the scientific literature, and thus misinform healthcare decision-makers.</p
    corecore