153 research outputs found

    Smooth Horizonless Geometries Deep Inside the Black-Hole Regime

    Get PDF
    This Letter has been highlighted by the editors as an Editor's Suggestion.This Letter has been highlighted by the editors as an Editor's Suggestion

    Taming open/closed string duality with a Losev trick

    Get PDF
    A target space string field theory formulation for open and closed B-model is provided by giving a Batalin-Vilkovisky quantization of the holomorphic Chern-Simons theory with off-shell gravity background. The target space expression for the coefficients of the holomorphic anomaly equation for open strings are obtained. Furthermore, open/closed string duality is proved from a judicious integration over the open string fields. In particular, by restriction to the case of independence on continuous open moduli, the shift formulas of [7] are reproduced and shown therefore to encode the data of a closed string dual.Comment: 22 pages, no figures; v.2 Refs. and a comment added

    Manifestly Supersymmetric RG Flows

    Full text link
    Renormalisation group (RG) equations in two-dimensional N=1 supersymmetric field theories with boundary are studied. It is explained how a manifestly N=1 supersymmetric scheme can be chosen, and within this scheme the RG equations are determined to next-to-leading order. We also use these results to revisit the question of how brane obstructions and lines of marginal stability appear from a world-sheet perspective.Comment: 22 pages; references added, minor change

    The supermultiplet of boundary conditions in supergravity

    Full text link
    Boundary conditions in supergravity on a manifold with boundary relate the bulk gravitino to the boundary supercurrent, and the normal derivative of the bulk metric to the boundary energy-momentum tensor. In the 3D N=1 setting, we show that these boundary conditions can be stated in a manifestly supersymmetric form. We identify the Extrinsic Curvature Tensor Multiplet, and show that boundary conditions set it equal to (a conjugate of) the boundary supercurrent multiplet. Extension of our results to higher-dimensional models (including the Randall-Sundrum and Horava-Witten scenarios) is discussed.Comment: 22 pages. JHEP format; references added; published versio

    Towards the F-Theorem: N=2 Field Theories on the Three-Sphere

    Full text link
    For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean path integrals on the three-sphere can be calculated using the method of localization; they reduce to certain matrix integrals that depend on the R-charges of the matter fields. We solve a number of such large N matrix models and calculate the free energy F as a function of the trial R-charges consistent with the marginality of the superpotential. In all our {\cal N}=2 superconformal examples, the local maximization of F yields answers that scale as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are 7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local F-maximization is equivalent to the minimization of the volume of Y over the space of Sasakian metrics, a procedure also referred to as Z-minimization. Moreover, we find that the functions F and Z are related for any trial R-charges. In the models we study F is positive and decreases along RG flows. We therefore propose the "F-theorem" that we hope applies to all 3-d field theories: the finite part of the free energy on the three-sphere decreases along RG trajectories and is stationary at RG fixed points. We also show that in an infinite class of Chern-Simons-matter gauge theories where the Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at large N. This non-trivial scaling matches that of the free energy of the gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement

    Non-Perturbative Topological Strings And Conformal Blocks

    Get PDF
    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.Comment: 36 page
    • 

    corecore