54 research outputs found

    An In Vitro System for Studying Murid Herpesvirus-4 Latency and Reactivation

    Get PDF
    The narrow species tropisms of Epstein-Barr Virus (EBV) and the Kaposi's Sarcoma -associated Herpesvirus (KSHV) have made Murid Herpesvirus-4 (MuHV-4) an important tool for understanding how gammaherpesviruses colonize their hosts. However, while MuHV-4 pathogenesis studies can assign a quantitative importance to individual genes, the complexity of in vivo infection can make the underlying mechanisms hard to discern. Furthermore, the lack of good in vitro MuHV-4 latency/reactivation systems with which to dissect mechanisms at the cellular level has made some parallels with EBV and KSHV hard to draw. Here we achieved control of the MuHV-4 lytic/latent switch in vitro by modifying the 5β€² untranslated region of its major lytic transactivator gene, ORF50. We terminated normal ORF50 transcripts by inserting a polyadenylation signal and transcribed ORF50 instead from a down-stream, doxycycline-inducible promoter. In this way we could establish fibroblast clones that maintained latent MuHV-4 episomes without detectable lytic replication. Productive virus reactivation was then induced with doxycycline. We used this system to show that the MuHV-4 K3 gene plays a significant role in protecting reactivating cells against CD8+ T cell recognition

    Glycosaminoglycan Interactions in Murine Gammaherpesvirus-68 Infection

    Get PDF
    Glycosaminoglycans (GAGs) commonly participate in herpesvirus entry. They are thought to provide a reversible attachment to cells that promotes subsequent receptor binding. Murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts and epithelial cells is highly GAG-dependent. This is a function of the viral gp150, in that gp150-deficient mutants are much less GAG-dependent than wild-type. Here we show that the major MHV-68 GAG-binding protein is not gp150 but gp70, a product of ORF4. Surprisingly, ORF4-deficient MHV-68 showed normal cell binding and was more sensitive than wild-type to inhibition by soluble heparin rather than less. Thus, the most obvious viral GAG interaction made little direct contribution to infection. Indeed, a large fraction of the virion gp70 had its GAG-binding domain removed by post-translational cleavage. ORF4 may therefore act mainly to absorb soluble GAGs and prevent them from engaging gp150 prematurely. In contrast to gp70, gp150 bound poorly to GAGs, implying that it provides little in the way of adhesion. We hypothesize that it acts instead as a GAG-sensitive switch that selectively activates MHV-68 entry at cell surfaces

    Involvement of TLR2 in Recognition of Acute Gammaherpesvirus-68 Infection

    Get PDF
    Toll-like receptors (TLRs) play a crucial role in the activation of innate immunity in response to many viruses. We previously reported the implication of TLR2 in the recognition of Epstein-Barr virus (EBV) by human monocytes. Because murine gammaherpesvirus-68 (MHV-68) is a useful model to study human gammaherpesvirus pathogenesis in vivo, we evaluated the importance of mouse TLR2 in the recognition of MHV-68.In studies using transfected HEK293 cells, MHV-68 lead to the activation of NF-ΞΊB reporter through TLR2. In addition, production of interleukin-6 (IL-6) and interferon-Ξ± (IFN-Ξ±) upon MHV-68 stimulation was reduced in murine embryonic fibroblasts (MEFs) derived from TLR2-/- and MyD88-/- mice as compared to their wild type (WT) counterpart. In transgenic mice expressing a luciferase reporter gene under the control of the mTLR2 promoter, MHV-68 challenge activated TLR2 transcription. Increased expression levels of TLR2 on blood granulocytes (CD115(-)Gr1(+)) and inflammatory monocytes (CD115(+)Gr1(+)), which mobilized to the lungs upon infection with MHV-68, was also confirmed by flow cytometry. Finally, TLR2 or MyD88 deficiency was associated with decreased IL-6 and type 1 IFN production as well as increased viral burden during short-term challenges with MHV-68.TLR2 contributes to the production of inflammatory cytokines and type 1 IFN as well as to the control of viral burden during infection with MHV-68. Taken together, our results suggest that the TLR2 pathway has a relevant role in the recognition of this virus and in the subsequent activation of the innate immune response

    The Anti-interferon Activity of Conserved Viral dUTPase ORF54 is Essential for an Effective MHV-68 Infection

    Get PDF
    Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNARβˆ’/βˆ’ mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68

    Gammaherpesvirus-Induced Lung Pathology Is Altered in the Absence of Macrophages

    Full text link
    The purpose of this study was to examine the lung pathogenesis of murine gammaherpesvirus (MHV-68) infection in mice that lack CC chemokine receptor CCR2, an important receptor for macrophage recruitment to sites of inflammation. BALB/c and CCR2 βˆ’/βˆ’ mice were inoculated intranasally (i.n.) with MHV-68 and samples were collected during acute infection (6 dpi) and following viral clearance (12 dpi). Immunohistochemistry was used to determine which cells types responded to MHV-68 infection in the lungs. Lung pathology in infected BALB/c mice was characterized by a mixed inflammatory cell infiltrate, necrosis, and increased alveolar macrophages by 12 dpi. Immunohistochemistry showed intense positive staining for macrophages. CCR2 βˆ’/βˆ’ mice showed greater inflammation in the lungs at 12 dpi than did BALB/c mice, with more necrosis and diffuse neutrophil infiltrates in the alveoli. Immunohistochemistry demonstrated much less macrophage infiltration in the CCR2 βˆ’/βˆ’ mice than in the BALB/c mice. These studies show that CCR2 is involved in macrophage recruitment in response to MHV-68 infection and illustrates how impairments in macrophage function affect the normal inflammatory response to this viral infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41345/1/408_2004_Article_2535.pd

    Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

    Get PDF
    Murine Ξ³-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of Ξ³-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology

    The Murid Herpesvirus-4 gH/gL Binds to Glycosaminoglycans

    Get PDF
    The first contact a virus makes with cells is an important determinant of its tropism. Murid Herpesvirus-4 (MuHV-4) is highly dependent on glycosaminoglycans (GAGs) for cell binding. Its first contact is therefore likely to involve a GAG-binding virion glycoprotein. We have previously identified two such proteins, gp70 and gp150. Gp70 binds strongly to GAGs. However, deleting it makes little difference to MuHV-4 cell binding or GAG-dependence. Deleting gp150, by contrast, frees MuHV-4 from GAG dependence. This implies that GAGs normally displace gp150 to allow GAG-independent cell binding. But the gp150 GAG interaction is weak, and so would seem unlikely to make an effective first contact. Since neither gp70 nor gp150 matches the expected profile of a first contact glycoprotein, our understanding of MuHV-4 GAG interactions must be incomplete. Here we relate the seemingly disconnected gp70 and gp150 GAG interactions by showing that the MuHV-4 gH/gL also binds to GAGs. gH/gL-blocking and gp70-blocking antibodies individually had little effect on cell binding, but together were strongly inhibitory. Thus, there was redundancy in GAG binding between gp70 and gH/gL. Gp150-deficient MuHV-4 largely resisted blocks to gp70 and gH/gL binding, consistent with its GAG independence. The failure of wild-type MuHV-4 to do the same argues that gp150 is normally engaged only down-stream of gp70 or gH/gL. MuHV-4 GAG dependence is consequently two-fold: gp70 or gH/gL binding provides virions with a vital first foothold, and gp150 is then engaged to reveal GAG-independent binding

    A Gamma-Herpesvirus Glycoprotein Complex Manipulates Actin to Promote Viral Spread

    Get PDF
    Viruses lack self-propulsion. To move in multi-cellular hosts they must therefore manipulate infected cells. Herpesviruses provide an archetype for many aspects of host manipulation, but only for alpha-herpesviruses in is there much information about they move. Other herpesviruses are not necessarily the same. Here we show that Murine gamma-herpesvirus-68 (MHV-68) induces the outgrowth of long, branched plasma membrane fronds to create an intercellular network for virion traffic. The fronds were actin-based and RhoA-dependent. Time-lapse imaging showed that the infected cell surface became highly motile and that virions moved on the fronds. This plasma membrane remodelling was driven by the cytoplasmic tail of gp48, a MHV-68 glycoprotein previously implicated in intercellular viral spread. The MHV-68 ORF58 was also required, but its role was simply transporting gp48 to the plasma membrane, since a gp48 mutant exported without ORF58 did not require ORF58 to form membrane fronds either. Together, gp48/ORF58 were sufficient to induce fronds in transfected cells, as were the homologous BDLF2/BMRF2 of Epstein-Barr virus. Gp48/ORF58 therefore represents a conserved module by which gamma-herpesviruses rearrange cellular actin to increase intercellular contacts and thereby promote their spread

    Global mRNA Degradation during Lytic Gammaherpesvirus Infection Contributes to Establishment of Viral Latency

    Get PDF
    During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3β€² end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment

    Murid Herpesvirus-4 Exploits Dendritic Cells to Infect B Cells

    Get PDF
    Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells
    • …
    corecore