10,152 research outputs found
Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface
The variation in the radiative output of the Sun, described in terms of solar
irradiance, is important to climatology. A common assumption is that solar
irradiance variability is driven by its surface magnetism. Verifying this
assumption has, however, been hampered by the fact that models of solar
irradiance variability based on solar surface magnetism have to be calibrated
to observed variability. Making use of realistic three-dimensional
magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art
solar magnetograms from the Solar Dynamics Observatory, we present a model of
total solar irradiance (TSI) that does not require any such calibration. In
doing so, the modeled irradiance variability is entirely independent of the
observational record. (The absolute level is calibrated to the TSI record from
the Total Irradiance Monitor.) The model replicates 95% of the observed
variability between April 2010 and July 2016, leaving little scope for
alternative drivers of solar irradiance variability at least over the time
scales examined (days to years).Comment: Supplementary Materials;
https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.119.091102/supplementary_material_170801.pd
Symbiont 'bleaching' in planktic foraminifera during the Middle Eocene Climatic Optimum
Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (δ13C) was temporarily reduced for ∼100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum δ18O values and reduction in test size–δ13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera
The Spectroscopic Age of 47 Tuc
High signal-to-noise integrated spectra of the metal-rich globular cluster 47
Tuc, spanning the H-gamma(HR) and Fe4668 line indices, have been obtained. The
combination of these indices has been suggested (Jones & Worthey 1995, ApJ,
446, L31) as the best available mechanism for cleanly separating the
age-metallicity degeneracy which hampers the dating of distant, unresolved,
elliptical galaxies. For the first time, we apply this technique to a nearby
spheroidal system, 47 Tuc, for which independent ages, based upon more
established methods, exist. Such an independent test of the technique's
suitability has not been attempted before, but is an essential one before its
application to more distant, unresolved, stellar populations can be considered
valid. Because of its weak series of Balmer lines, relative to model spectra,
our results imply a spectroscopic ``age'' for 47 Tuc well in excess of 20 Gyr,
at odds with the colour-magnitude diagram age of 14+/-1 Gyr. The derived metal
abundance, however, is consistent with the known value. Emission ``fill-in'' of
the H-gamma line as the source of the discrepancy cannot be entirely excluded
by existing data, although the observational constraints are restrictive.Comment: 17 pages, 4 figures, LaTeX, accepted for publication in The
Astronomical Journal, also available at
http://casa.colorado.edu/~bgibson/publications.htm
A Universal Vertical Stellar Density Distribution Law for the Galaxy
We reduced the observational logarithmic space densities in the vertical
direction up to 8 kpc from the galactic plane, for stars with absolute
magnitudes (5,6], (6,7] and [5,10] in the fields #0952+5245 and SA114, to a
single exponential density law. One of three parameters in the quadratic
expression of the density law corresponds to the local space density for stars
with absolute magnitudes in question. There is no need of any definition for
scaleheights or population types. We confirm with the arguments of non-discrete
thin and thick discs for our Galaxy and propose a single structure up to
several kiloparsecs from the galactic plane. The logarithmic space densities
evaluated by this law for the ELAIS field fit to the observational ones.
Whereas, there are considerable offsets for the logarithmic space densities
produced by two sets of classical galactic model parameters from the
observational ones, for the same field.Comment: 9 pages, 1 figure and 10 tables, accepted for publication in
Astrophysics & Space Scienc
New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes
The Middle Eocene Climatic Optimum (MECO) was a warming event that interrupted the long-term Eocene cooling trend. While this event is well documented at high southern and mid-latitudes, it is poorly known from low latitudes and its timing and duration are not well constrained because of problems of hiati, microfossil preservation and weak magnetic polarity in key sedimentary sections. Here, we report the results of a study designed to improve the bio-, magneto- and chemostratigraphy of the MECO interval using high-resolution records from two low-latitude sections in the Atlantic Ocean, Ocean Drilling Program (ODP) Sites 1051 and 1260. We present the first detailed benthic foraminiferal stable isotope records of the MECO from the low latitudes as well as the biostratigraphic counts of Orbulinoides beckmanni and new magnetostratigraphic results. Our data demonstrate a ~ 750 kyr-long duration for the MECO characterized by increasing δ13C and decreasing δ18O, with minimum δ18O values lasting ~ 40 kyr at 40.1 Ma coincident with a short-lived negative δ13C excursion. Thereafter, δ18O and δ13C values recover rapidly. The shift to minimum δ18O values at 40.1 Ma is coincident with a marked increase in the abundance of the planktonic foraminifera O. beckmanni, consistent with its inferred warm-water preference. O. beckmanni is an important Eocene biostratigraphic marker, defining planktonic foraminiferal Zone E12 with its lowest and highest occurrences (LO and HOs). Our new records reveal that the LO of O. beckmanni is distinctly diachronous, appearing ~ 500 kyr earlier in the equatorial Atlantic than in the subtropics (40.5 versus 41.0 Ma). We also show that, at both sites, the HO of O. beckmanni at 39.5 Ma is younger than the published calibrations, increasing the duration of Zone E12 by at least 400 kyr. In accordance with the tropical origins of O. beckmanni, this range expansion to higher latitudes may have occurred in response to sea surface warming during the MECO and subsequently disappeared with cooling of surface waters
Techniques development for whale migration tracking
Effort leading to the completion of development and fabrication of expansible whale harnesses and whale-carried instrument pods is described, along with details of the gear. Early preparative effort for a January-February 1974 field expedition is reported
- …