2,022 research outputs found
Nucleosynthesis in Type Ia Supernovae
Among the major uncertainties involved in the Chandrasekhar mass models for
Type Ia supernovae are the companion star of the accreting white dwarf (or the
accretion rate that determines the carbon ignition density) and the flame speed
after ignition. We present nucleosynthesis results from relatively slow
deflagration (1.5 - 3 % of the sound speed) to constrain the rate of accretion
from the companion star. Because of electron capture, a significant amount of
neutron-rich species such as ^{54}Cr, ^{50}Ti, ^{58}Fe, ^{62}Ni, etc. are
synthesized in the central region. To avoid the too large ratios of
^{54}Cr/^{56}Fe and ^{50}Ti/^{56}Fe, the central density of the white dwarf at
thermonuclear runaway must be as low as \ltsim 2 \e9 \gmc. Such a low central
density can be realized by the accretion as fast as \dot M \gtsim 1 \times
10^{-7} M_\odot yr^{-1}. These rapidly accreting white dwarfs might correspond
to the super-soft X-ray sources.Comment: 10 page LaTeX, 7 PostScript figures, to appear in Nuclear Physics A,
Vol. A621 (1997
Comment on "Heavy element production in inhomogeneous big bang nucleosynthesis"
The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005);
astro-ph/0507439] claims that heavy nuclei could have been produced in a
combined p- and r-process in very high baryon density regions of an
inhomogeneous big bang. However, they do not account for observational
constraints and previous studies which show that such high baryon density
regions did not significantly contribute to big bang abundances.Comment: 2 pages, submitted to Phys. Rev. D on Feb 23, 200
Nucleosynthesis in Type II Supernovae
Presupernova evolution and explosive nucleosynthesis in massive stars for
main-sequence masses from 13 to 70 are calculated. We
examine the dependence of the supernova yields on the stellar mass,
^{12}C(\alpha, \gamma) ^{16}O} rate, and explosion energy. The supernova
yields integrated over the initial mass function are compared with the solar
abundances.Comment: 1 Page Latex source, 10 PostScript figures, to appear in Nuclear
Physics A, Vol. A616 (1997
Properties of Type II Plateau Supernova SNLS-04D2dc: Multicolor Light Curves of Shock Breakout and Plateau
Shock breakout is the brightest radiative phenomenon in a Type II supernova
(SN). Although it was predicted to be bright, the direct observation is
difficult due to the short duration and X-ray/ultraviolet-peaked spectra. First
entire observations of the shock breakouts of Type II Plateau SNe (SNe IIP)
were reported in 2008 by ultraviolet and optical observations by the {\it
GALEX} satellite and supernova legacy survey (SNLS), named SNLS-04D2dc and
SNLS-06D1jd. We present multicolor light curves of a SN IIP, including the
shock breakout and plateau, calculated with a multigroup radiation
hydrodynamical code {\sc STELLA} and an evolutionary progenitor model. The
synthetic multicolor light curves reproduce well the observations of
SNLS-04D2dc. This is the first study to reproduce the ultraviolet light curve
of the shock breakout and the optical light curve of the plateau consistently.
We conclude that SNLS-04D2dc is the explosion with a canonical explosion energy
ergs and that its progenitor is a star with a zero-age
main-sequence mass and a presupernova radius . The
model demonstrates that the peak apparent -band magnitude of the shock
breakout would be mag if a SN being identical to
SNLS-04D2dc occurs at a redshift , which can be reached by 8m-class
telescopes. The result evidences that the shock breakout has a great potential
to detect SNe IIP at z\gsim1.Comment: 5 pages, 5 figures. Accepted for publication in the Astrophysical
Journal Letter
Does mass accretion lead to field decay in neutron stars
The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars
Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group
We propose a systematic method to generate a complete orthonormal basis set
of multipole expansion for magnetic structures in arbitrary crystal structure.
The key idea is the introduction of a virtual atomic cluster of a target
crystal, on which we can clearly define the magnetic configurations
corresponding to symmetry-adapted multipole moments. The magnetic
configurations are then mapped onto the crystal so as to preserve the magnetic
point group of the multipole moments, leading to the magnetic structures
classified according to the irreducible representations of crystallographic
point group. We apply the present scheme to pyrhochlore and hexagonal ABO3
crystal structures, and demonstrate that the multipole expansion is useful to
investigate the macroscopic responses of antiferromagnets
The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of A Strongly Magnetized Neutron Star
Late phase nebular spectra and photometry of Type Ib Supernova (SN) 2005bf
taken by the Subaru telescope at ~ 270 and ~ 310 days since the explosion are
presented. Emission lines ([OI]6300, 6363, [CaII]7291, 7324, [FeII]7155) show
the blueshift of ~ 1,500 - 2,000 km s-1. The [OI] doublet shows a doubly-peaked
profile. The line luminosities can be interpreted as coming from a blob or jet
containing only ~ 0.1 - 0.4 Msun, in which ~ 0.02 - 0.06 Msun is 56Ni
synthesized at the explosion. To explain the blueshift, the blob should either
be of unipolar moving at the center-of-mass velocity v ~ 2,000 - 5,000 km s-1,
or suffer from self-absorption within the ejecta as seen in SN 1990I. In both
interpretations, the low-mass blob component dominates the optical output both
at the first peak (~ 20 days) and at the late phase (~ 300 days). The low
luminosity at the late phase (the absolute R magnitude M_R ~ -10.2 mag at ~ 270
days) sets the upper limit for the mass of 56Ni < ~ 0.08 Msun, which is in
contradiction to the value necessary to explain the second, main peak
luminosity (M_R ~ -18.3 mag at ~ 40 days). Encountered by this difficulty in
the 56Ni heating model, we suggest an alternative scenario in which the heating
source is a newly born, strongly magnetized neutron star (a magnetar) with the
surface magnetic field Bmag ~ 10^{14-15} gauss and the initial spin period P0 ~
10 ms. Then, SN 2005bf could be a link between normal SNe Ib/c and an X-Ray
Flash associated SN 2006aj, connected in terms of Bmag and/or P0.Comment: 16 pages, 12 figures. Accepted by the Astrophysical Journa
Nucleosynthesis Basics and Applications to Supernovae
This review concentrates on nucleosynthesis processes in general and their
applications to massive stars and supernovae. A brief initial introduction is
given to the physics in astrophysical plasmas which governs composition
changes. We present the basic equations for thermonuclear reaction rates and
nuclear reaction networks. The required nuclear physics input for reaction
rates is discussed, i.e. cross sections for nuclear reactions,
photodisintegrations, electron and positron captures, neutrino captures,
inelastic neutrino scattering, and beta-decay half-lives. We examine especially
the present state of uncertainties in predicting thermonuclear reaction rates,
while the status of experiments is discussed by others in this volume (see M.
Wiescher). It follows a brief review of hydrostatic burning stages in stellar
evolution before discussing the fate of massive stars, i.e. the nucleosynthesis
in type II supernova explosions (SNe II). Except for SNe Ia, which are
explained by exploding white dwarfs in binary stellar systems (which will not
be discussed here), all other supernova types seem to be linked to the
gravitational collapse of massive stars (M8M) at the end of their
hydrostatic evolution. SN1987A, the first type II supernova for which the
progenitor star was known, is used as an example for nucleosynthesis
calculations. Finally, we discuss the production of heavy elements in the
r-process up to Th and U and its possible connection to supernovae.Comment: 52 pages, 20 figures, uses cupconf.sty (included); to appear in
"Nuclear and Particle Astrophysics", eds. J. Hirsch., D. Page, Cambridge
University Pres
- âŠ