415 research outputs found

    Failure of Interferon γ to Induce the Anti-Inflammatory Interleukin 18 Binding Protein in Familial Hemophagocytosis

    Get PDF
    Background: Familial hemophagocytosis (FHL) is a rare disease associated with defects in proteins involved in CD8+ T-cell cytotoxicity. Hyperactivation of immune cells results in a perilous, Th1-driven cytokine storm. We set out to explore the regulation of cytokines in an FHL patient who was clinically stable on low-dose immunosuppressive therapy after bone marrow transplantation over a six-month period. During this period, chimerism analyses showed that the fraction of host cells was between 1 and 10%. Both parents of the patient as well as healthy volunteers were studied for comparison. Methods/Principal Findings: Using ELISA, quantitative real-time PCR, and clinical laboratory methods, we investigated constitutive and inducible cytokines, polymorphisms, and clinical parameters in whole blood and whole blood cultures. Although routine laboratory tests were within the normal range, the chemokines IP-10 and IL-8 as well as the cytokine IL-27p28 were increased up to 10-fold under constitutive and stimulated conditions compared to healthy controls. Moreover, high levels of IFNgamma and TNFalpha were produced upon stimulation. Unexpectedly, IFNgamma induction of IL-18 binding protein (IL-18BP) was markedly reduced (1.6-fold vs 5-fold in controls). The patient's mother featured intermediately increased cytokine levels, whereas levels in the father were similar to those in the controls. Conclusions/Significance: Since IL-18 plays a major role in perpetuating hemophagocytosis, the failure of IFNgamma to induce IL-18BP may constitute a fundamental pathogenetic mechanism. Furthermore, increased production of IL-8 and IL-27 appears to be associated with this disease. Such dysregulation of cytokines was also found in the heterozygous parents, providing a novel insight into genotype-phenotype correlation of FHL which may encourage future research of this rare disease

    Protein C preserves microcirculation in a model of neonatal septic shock

    Get PDF
    Objectives: Sepsis remains a disease with a high mortality in neonates. Microcirculatory impairment plays a pivotal role in the development of multiorgan failure in septic newborns. The hemodynamic effects of recombinant activated protein C (rhAPC) were tested in an animal model of neonatal septic shock focusing on intestinal microcirculation. Materials and methods: Endotoxic shock was triggered by intravenous application of Escherichia coli lipopolysaccarides in newborn piglets. Thereafter, five animals received a continuous infusion of 24 µg/kg/h rhAPC, and five received vehicle for control. Over the course of three hours, intestinal microcirculation was assessed by intravital microscopy every 30 min. Macrocirculation and blood counts were monitored simultaneously. Results: After a short hypotensive period in all animals, the arterial blood pressure returned to baseline in the rhAPC-treated piglets, whereas the hypotension became increasingly severe in the controls. By 90 min, mean blood pressure in the controls was significantly lower than in the treatment group. Similar observations were made regaring microcirculation. After an early impairment in all study animals, functional capillary density and intestinal microcirculatory red blood cell velocity and red blood cell flow recovered in the rhAPC group, but deteriorated further in the control piglets. Conclusion: Recombinant activated protein C protects macro- and microcirculation from endotoxic shock

    Thrombosis in the critically ill neonate: incidence, diagnosis, and management

    Get PDF
    Among children, newborn infants are most vulnerable to development of thrombosis and serious thromboembolic complications. Amongst newborns, those neonates who are critically ill, both term and preterm, are at greatest risk for developing symptomatic thromboembolic disease. The most important risk factors are inflammation, DIC, impaired liver function, fluctuations in cardiac output, and congenital heart disease, as well as exogenous risk factors such as central venous or arterial catheters. In most clinically symptomatic infants, diagnosis is made by ultrasound, venography, or CT or MRI angiograms. However, clinically asymptomatic vessel thrombosis is sometimes picked up by screening investigations or during routine imaging for other indications. Acute management of thrombosis and thromboembolism comprises a variety of approaches, including simple observation, treatment with unfractionated or low molecular weight heparin, as well as more aggressive interventions such as thrombolytic therapy or catheter-directed revascularization. Long-term follow-up is dependent on the underlying diagnosis. In the majority of infants, stabilization of the patients’ general condition and hemodynamics, which allows removal of indwelling catheters, renders long-term anticoagulation superfluous. Nevertheless, in certain types of congenital heart disease or inherited thrombophilia, long-term prophylaxis may be warranted. This review article focuses on pathophysiology, diagnosis, and acute and long-term management of thrombosis in critically ill term and preterm neonates

    Influence of Mn on the magnetocaloric effect of nanoperm-type alloys

    Get PDF
    In this paper, the influence of the Mn content on the magnetocaloric response of ribbon-shaped amorphous samples of Fe80−xMnxB20 x=10, 15, 18, 20, and 24 , has been studied. For this purpose, the temperature and field dependence of the magnetic entropy change SM have been obtained from magnetization curves. The partial substitution of Fe by Mn leads to a monotonous change in the Curie temperature TC of the alloys from 438 K for x=10 to 162 K for x=24, in agreement with the coherent-potential approximation. These Curie temperatures could make them good candidates to be used for magnetic refrigeration at room temperature. For an applied field of 1.5 T, the maximum entropy change SM pk passes from 1 J K−1 kg−1 x=10 to 0.5 J K−1 kg−1 x=24 , and the refrigerant capacity varies between 117 J kg−1 x=10 and 68 J kg−1 x=24 . A linear relationship between SM pk and the average magnetic moment per transition metal atom Fe,Mn has been presented. © 2010 American Institute of Physics

    Generalized dynamical density functional theory for classical fluids and the significance of inertia and hydrodynamic interactions

    Get PDF
    We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the non-equilibrium properties of the system. We derive a general dynamical density functional theory (DDFT) which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing DDFTs and a Navier-Stokes-like equation with additional non-local terms.Comment: 5 pages, 4 figures, 4 supplementary movie files, I supplementary pd

    Profiling invasive Plasmodium falciparum merozoites using an integrated omics approach

    Get PDF
    The symptoms of malaria are brought about by blood-stage parasites, which are established when merozoites invade human erythrocytes. Our understanding of the molecular events that underpin erythrocyte invasion remains hampered by the short-period of time that merozoites are invasive. To address this challenge, a Plasmodium falciparum gamma-irradiated long-lived merozoite (LLM) line was developed and investigated. Purified LLMs invaded erythrocytes by an increase of 10–300 fold compared to wild-type (WT) merozoites. Using an integrated omics approach, we investigated the basis for the phenotypic difference. Only a few single nucleotide polymorphisms within the P. falciparum genome were identified and only marginal differences were observed in the merozoite transcriptomes. By contrast, using label-free quantitative mass-spectrometry, a significant change in protein abundance was noted, of which 200 were proteins of unknown function. We determined the relative molar abundance of over 1100 proteins in LLMs and further characterized the major merozoite surface protein complex. A unique processed MSP1 intermediate was identified in LLM but not observed in WT suggesting that delayed processing may be important for the observed phenotype. This integrated approach has demonstrated the significant role of the merozoite proteome during erythrocyte invasion, while identifying numerous unknown proteins likely to be involved in invasion

    Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.

    Get PDF
    Starting from the Kramers equation for the phase-space dynamics of the N-body probability distribution, we derive a dynamical density functional theory (DDFT) for colloidal fluids including the effects of inertia and hydrodynamic interactions (HI). We compare the resulting theory to extensive Langevin dynamics simulations for both hard rod systems and three-dimensional hard sphere systems with radially symmetric external potentials. As well as demonstrating the accuracy of the new DDFT, by comparing with previous DDFTs which neglect inertia, HI, or both, we also scrutinize the significance of including these effects. Close to local equilibrium we derive a continuum equation from the microscopic dynamics which is a generalized Navier–Stokes-like equation with additional non-local terms governing the effects of HI. For the overdamped limit we recover analogues of existing configuration-space DDFTs but with a novel diffusion tensor

    A biophysical model of prokaryotic diversity in geothermal hot springs

    Full text link
    Recent field investigations of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems, with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than the expected single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution field data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. Further, we present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed diversity of different strains of the photosynthetic bacteria. It also reproduces the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms

    ECSA's Characteristics of Citizen Science: Explanation Notes

    Get PDF
    This explanation document provides an interpretation of and explanation for the characteristics document, which was kept short to make it useful to different stakeholders. In this document, the characteristics document is represented, with the original text in blue and an explanation in black
    corecore