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We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects

which strongly influence the nonequilibrium properties of the system. We derive a general dynamical

density functional theory which shows very good agreement with full Langevin dynamics. In suitable

limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with

additional nonlocal terms.
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Since the observation of the Brownian motion of pollen
particles in water in the 19th Century [1], the study of
classical fluids has been fundamental not only to the devel-
opment of statistical mechanics [2], but also to many other
fields in physics, chemistry and engineering, e.g., the evo-
lution of microscopy over the last century [3], recent
advances in biophysical research [4] and the rapidly grow-
ing field of microfluidics [5].

Colloidal systems, in particular, are versatile model ones
for both theoretical and experimental scrutiny. Many of the
forces governing their structure and behaviour govern also
those of matter, whilst the sufficiently large physical size of
colloidal particles makes them accessible experimentally.
However, the large number of particles in real-world sys-
tems translates to high-dimensional mathematical models,
which quickly become computationally intractable.

Nonequilibrium statistical mechanics approaches [6,7],
such as the Boltzmann equation, allow the dynamics of
systems of arbitrarily large numbers of particles to be
studied. An important example is dynamical density func-
tional theory (DDFT) [7] for the evolution of the one-body
mass distribution. However, existing DDFTs neglect either
the momentum of the colloidal particles [8], or the hydro-
dynamic interactions (HI) mediated through the bath [9], or
both, as in the pioneering work in Ref. [10]. Yet, inertial
effects are negligible only in the high-friction limit [11],
whilst HI are long range [12]; it is therefore unclear that
existing DDFTs are sufficiently accurate to model general
colloidal systems. Here we outline a DDFT formalism
which carefully and systematically accounts for inertia
and HI, an important step towards accurate and predictive
modelling of physically-relevant systems. It is validated
with stochastic simulations, and existing DDFTs [8–10]
are shown to be special cases.

We are interested in systems with a large number N
identical, spherically symmetric colloidal particles of
mass m suspended in a bath of many more, much smaller
and much lighter particles. Typically, colloidal particles are

of size 1 nm–1 �m, occupying the same volume as ap-
proximately 107–1010 water molecules. As such, treating
the bath particles exactly is computationally prohibitive.
However, a typical time scale for a colloidal particle to
diffuse a distance equal to its diameter is 1s, while the
typical time between collisions of water molecules is
�b � 10�15 s [13]. Hence, for time scales significantly
larger than �b, we may introduce a coarse-grained model
and consider only the colloidal particles, treating the bath
in a stochastic manner.
This approximation leads to the Langevin [2] equations

for the 3N-dimensional colloidal position and momentum
vectors r ¼ ðr1; . . . ; rNÞ and p ¼ ðp1; . . . ;pNÞ with ri and
pi the position and momentum of the ith particle:

dr

dt
¼ p

m
;

dp

dt
¼�rrVðr; tÞ ��ðrÞpþAðrÞfðtÞ: (1)

Here, V is the potential, generally a sum of an external
potential, such as gravity, and interparticle potentials, such
as electrostatic effects. The motion of the colloidal parti-
cles causes flows in the bath, which in turn cause forces on
the colloidal particles, referred to already as HI. The
momenta and forces are related by the 3N � 3N positive-
definite friction tensor �. See Supplemental Material [14]
for demonstrations of these effects on sedimenting hard
spheres. Finally, collisions of bath particles with colloidal
particles are described by stochastic forces f, given by
Gaussian white noise, the strength of which is determined
by a generalized fluctuation-dissipation theorem [15],

AðrÞ ¼ ðmkBT�ðrÞÞ1=2, with T the temperature and kB
Boltzmann’s constant. We assume that T is constant in
space, i.e., that the solvent bath is also a heat bath on
colloidal timescales.
When N is large, interest lies not in particular realiza-

tions of (1), or experiments, but in averages over a large
number of them. Averaging (1) over the initial particle
distribution and the noise leads to the Kramers (Fokker-
Planck) equation, a 6N-dimensional deterministic partial
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differential equation for the evolution of the distribution

function fðNÞðr;p; tÞ, the probability of finding the particles
with positions r and momenta p at time t:

�
@t þ 1

m
p � rr � rrVðr; tÞ � rp

�
fðNÞðr;p; tÞ

� rp � ½�ðrÞðpþmkBTrpÞfðNÞðr;p; tÞ� ¼ 0 (2)

The main issue with solving (1) or (2), as with any
molecular approach, is that of computational intensity for
large systems. For (2), taking M discretization points for
each dimension would requireM6N points. Hence, the only
way to solve (2) for many particles is via Monte Carlo
methods, i.e., by solving (1). However, for nontrivial HI
this requires OðN3Þ operations at each time step, prohibit-
ing calculations for many-particle systems. (Additionally,
the characteristic scale of the spatial structures is often too
large to be accurately treated.)

In contrast, it is known rigorously [16] that the N-body

distribution function fðNÞ is a functional of the one-body

position distribution �ðr1; tÞ ¼ N
R
dpdr0fðNÞðr; p; tÞ,

where dr0 denotes integration over all positions except
r1. Hence, for any number of particles, the system is, in
principle, completely described by a function of only a
single three-dimensional position variable (cf., TDDFT in
quantum mechanics [17]).

This motivates the derivation of a DDFT, a closed evo-
lution equation for �. We consider the moments of (2) with
respect to momentum and obtain an infinite hierarchy of
equations, which must be truncated. This is analogous to
deriving the Euler or Navier-Stokes equation from the
Boltzmann equation [18]. We truncate the hierarchy at
the second equation; the next level treats the local tem-
perature, which here is constant due to the heat bath.
However, if required, this method can be systematically
extended to higher levels of the hierarchy.

We obtain a continuity equation for the density

@t�ðr1; tÞ þ rr1 � ð�ðr1; tÞvðr1; tÞÞ ¼ 0 (3)

and an evolution equation for the local velocity vðr; tÞ ¼
m�1

R
dpdr0pfðNÞðr;p; tÞ:

Dtvðr1; tÞ þ 1

�ðr1; tÞrr1 �
Z

dp1

p1 � p1

m2
fð1Þneqðr1;p1; tÞ

¼ � 1

m
rr1

�F ½��
��

� �vðr1; tÞ

� �
Z

dr2�ðr2; tÞgðr1; r2; ½��Þ
X2
j¼1

Zjðr1; r2Þvðrj; tÞ

(4)

Here Dt ¼ @t þ vðr1; tÞ � rr1 is the material derivative and

F is the (equilibrium) Helmholtz free energy functional;
see later. For ease of exposition, we restrict to two-body

HI: �ðrÞ ¼ �½1 þ ~�ðrÞ�, with the HI tensor ~� decom-

posed into 3� 3 blocks ~�ijðrÞ ¼ �ij

P
‘�iZ1ðri; r‘Þþ

ð1� �ijÞZ2ðri; rjÞ [11]. Here 1 is the 3N � 3N identity

matrix and � is the friction felt by a single, isolated

particle. Physically, ~�ij describes the force on particle i

due to the momentum of particle j. This two-body formu-
lation is generally more accurate than that for the diffusion
tensor (as in Ref. [8]), which can lead to incorrect physics
[19]. We have decomposed the one-body distribution

fð1Þðr1; p1; tÞ ¼ N
R
dp0dr0fðNÞðr; p; tÞ ¼ fð1Þle ðr1; p1; tÞ þ

fð1Þneqðr1; p1; tÞ, where fð1Þle is the local-equilibrium part, the

momentum dependence of which is given by a local
Maxwellian withmass�ðr; tÞ, meanm�ðr; tÞvðr; tÞ and vari-
ance mkBT�ðr; tÞ. The corresponding three quantities are

zero for the nonequilibrium part fð1Þneq. We have also written

the two-body reduced distribution as fð2Þðr1; r2;p1;p2; tÞ ¼
fð1Þðr1;p1; tÞfð1Þðr1;p1; tÞgðr1; r2; ½��Þ [6].
The nonlocal terms in (4), absent from previous DDFTs,

model important physical effects. That involving Z1 com-
bines with �v to give an effective, density-dependent fric-
tion coefficient. The Z2 term nonlocally couples the
velocities. Surprisingly, this does not require explicit mo-
mentum correlations in g. Neglecting these terms and

setting fð1Þneq ¼ 0 recovers a previous DDFT [9]. Setting

� ¼ 0 gives a DDFT for atomic and molecular fluids,
although the closures below are harder to justify.
The nontrivial challenge here is to close the momentum

equation (see Supplemental Material [14]) as a functional
of �. We briefly describe three steps:
At equilibrium there exists an exact functional identity

[20] N
R
dr0rr1VðrÞ�ðNÞðrÞ ¼ ðrr1

�F ½��
�� � kBTrr1Þ�ðr1Þ,

where F ½�� ¼ kBT
R

dr1�ðr1Þ½lnð�3�ðr1ÞÞ � 1� þ
F exc½�� þ R

dr1�ðr1ÞV1ðr1Þ with � the (irrelevant) de

Broglie wavelength. In general,F exc (the excess over ideal
gas term) is unknown but has been well-studied at equilib-
rium and good approximations exist, e.g., fundamental
measure theory (FMT) [7,21] (accurate for hard spheres)
and mean field theory [7], (exact for soft interactions at
high densities). We thus assume that the same identity
holds out of equilibrium, in particular giving the correct
equilibrium behaviour.
Since HI vanish at equilibrium there exists no analogous

identity. Instead, we assume the form for fð2Þ given above
for a ‘‘known’’ functional g. To go beyond this two-body
approach it is necessary to obtain higher-order reduced
distributions as functionals of �.

The term in (4) containing fð1Þneq is analogous to the

kinetic pressure tensor [6], and there is no reason to expect
it to be a simple functional of � and v. However, if it may
be neglected (e.g., via a maximum entropy approach [22])
or approximated as a functional of � and v (e.g., via a
Chapman-Enskog expansion), (3) and (4) give a DDFT.
Alternatively, extending the above hierarchy removes the
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need for this approximation, at the expense of requiring

one for a higher-order moment of fð1Þ.
Since these approximations are unconstrained, it is cru-

cial to test them numerically. As far as we know, these are
the first such verifications of a phase space DDFT. We now
describe three such tests for hard spheres of diameter�. We
nondimensionalize the equations with the units of length,
mass and energy being �, m and kBT respectively. We set

fð1Þneq ¼ 0, use the hard-sphere FMT functional [21], and

choose g to be the simplest possible (volume-exclusion)
pair correlation function gðr1; r2; ½��Þ ¼ 1 for jr1�r2j>1
and zero otherwise. Whilst not entirely consistent with the
FMT approximation, this is sufficiently accurate for our
purposes. For HI we choose the Rotne-Prager approxima-
tion [8,23] in the overdamped limit and its inverse for �
in (1). We use an 11-term two-body expansion [24] for �
in (4), leading to small quantitative differences between (1)
and (4). See Supplemental Material [14].

We take external potentials which depend spatially only
on jr1j, and assume that the same holds for � and v, giving
a one-dimensional DDFT problem. We use spectral meth-
ods [25], appropriately extended to integral operators and a
fifth order implicit Runge-Kutta method with step size
control [26]. The infinite physical domain is mirrored
and algebraically mapped onto [� 1, 1] with 200
Chebyshev collocation points, avoiding the singularity at
the origin. To capture the exponential decay of �, (3) and
(4) are reformulated for log�þ V1. The initial condition is
obtained from equilibrium DFT [20]. We solve the sto-
chastic equations via an Euler-Maruyama scheme with 105

time steps, averaged over 5000 runs, with initial conditions
chosen via slice sampling the (unnormalized) equilibrium
N-body distribution. The hard sphere potential is approxi-
mated via a slightly softened, differentiable one [8].

Figure 1 shows the mean radial position and velocity of
50 particles, with � ¼ 6, starting at equilibrium in a
radially-symmetric external potential V1ðr; 3Þ with
V1ðr; r0Þ ¼ 0:1ð1 � hÞr2 þ 3h � 10 exp½�ðr � r0Þ2=4�,
where hðrÞ ¼ ½erfððrþ r0Þ=2Þ � erfððr� r0Þ=2Þ�=2 is a
smooth cutoff. The potential is instantaneously switched
to V1ðr; 0Þ at time 0, and back to V1ðr; 3Þ at time 0.5. The
choice of 50 particles is large enough to overcome the
differences between the canonical ensemble stochastic
and grand canonical ensemble DDFT models, but also
allows ease of access to stochastic simulations. We show
four pairs of computations, each containing the solutions of
a DDFT (lines) and the corresponding stochastic equation
(symbols). The first pair (blue, solid) includes both inertia
and HI and compares our DDFT (3) and (4) to the Euler-
Maruyama [27] solution of (1) (circles). The second pair
(red, long dashes, squares) are the same simulations, but
when HI are neglected by setting � ¼ �1; see [9]. The
agreement between the DDFTs and stochastic simulations
is very good. The HI effects are quite striking; they in-
crease the effective friction and damp the dynamics.

The remaining two pairs of simulations in Fig. 1 are
restricted to position space via the high-friction approxi-
mation. The DDFTs both with [8] (green, short dashes) and
without [10] (purple, dots) HI, are compared to the Ermak-
McCammon [15] solution of the corresponding stochastic
equations (triangles, stars respectively). Whilst the agree-
ment between DDFT and stochastic simulations is again
very good, neglecting inertia leads to qualitatively different
behaviour of the system, resulting in a kink in the mean
position, compared to smooth curves with a delay before
the mean velocity changes sign. Again, HI are seen to
significantly damp the dynamics.
Figure 2 shows the evolution of the same 50 particles,

but we now switch between potentials V1ðr; 6Þ and V1ðr; 0Þ
only once, at time 0. We again have very good agreement
between our DDFT and stochastic simulations. The small
differences in the position distribution near the origin are
likely due to the choice of correlation function, which is
less accurate at higher densities. Here, HI dramatically
slow the build-up of particles near the origin. Having
verified our DDFT by comparison to stochastic simula-
tions, Fig. 3 shows the DDFT solution for 500 particles
with the same potentials, for which the stochastic equations
are computationally very costly. The HI effects are even
more dramatic, leading to qualitatively different behaviour.
This size-dependence shows that HI must be carefully
considered in any DDFT used to model macroscopic num-
bers of particles.
From now on we consider two-body interparticle poten-

tials and discuss two limits of (4). Close to local equilib-

rium, we expand fð1Þ and fð2Þ as Taylor series in rr1v [6],

obtaining a generalized compressible, nonlocal Navier-
Stokes-like integro-differential equation:
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FIG. 1 (color online). Mean radial positions and velocities
from DDFT (lines) and stochastic equations (symbols). Full
phase space with (blue, solid, circles) and without (red, long
dashes, squares) HI from DDFT (3) and (4) and stochastics (1).
Overdamped limit DDFT [8] and stochastics [15] with (green,
short dashes, triangles) and without (purple, dots, stars) HI.
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�Dtv ¼ �r2
r1vþ

�
� þ 1

3
�

�
rr1ðrr1 � vÞ þ �Gð½��; ½v�Þ;

where v ¼ vðr1; tÞ, � ¼ �ðr1; tÞ andGð½��; ½v�Þ is the right-
hand side of (4). The first three terms are standard but the
viscosities � and � are given by integrals involving the
two-body potential and the Taylor expansion coefficients.
Hence, the above equation is not amenable to a straightfor-
ward numerical solution, as also is the case for a simple
fluid [6]. The new terms in G are a pressure-like term,
depending on the gradient of the chemical potential, and HI
terms, discussed above.

Most DDFTs are formulated in the high-friction regime,
where the momenta of the colloidal particles equilibrate
on a much shorter timescale than their positions. In this

regime, we have a nondimensional parameter 	 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
��1L�1 � 1, where L is a ‘typical’ length scale

of the system. Denoting a Maxwellian momentum distri-

bution byMðp1Þ ¼ expð� jp1j2=ð2mkBTÞÞ=ð2mkBT
Þ3=2,
we find rigorously [11] that fð1Þðr1;p1;tÞ¼Mðp1Þ½�ðr1;tÞþ
	aðr1;tÞ�p1þOð	2Þ� for some function a; in particularR
dp1ðp1 � p1Þfð1Þðr1;p1; tÞ ¼ Oð	2Þ. For ease of presen-

tation, we set Z2 ¼ 0 (see [11] for the generalization to

Z2 � 0) and let �ð2Þðr1; r2; tÞ ¼ �ðr1; tÞ�ðr2; tÞgðr1; r2Þ.
Then � satisfies a Smoluchowski equation [11] with a
novel diffusion tensor

D ðr1; ½��Þ¼ kBT

m�

�
1þ

Z
dr2gðr1;r2Þ�ðr2; tÞZ1ðr1;r2Þ

��1
;

retained in the DDFT, cf., [8]. Surprisingly, D is a nonlocal
functional of � and implicitly time-dependent, even though

the friction tensor is time-independent. Previous phenome-
nological attempts at including a density-dependent diffu-
sion coefficient in DDFTs do not correctly take into
account the form of the diffusion tensor [28].
Our new DDFT should accurately model a wide spec-

trum of real-world problems and also help elucidate the
associated underlying phenomena. These include systems
in which HI or inertia are crucial, e.g., (i) wetting phe-
nomena [29], (ii) transport and coagulation of nanopar-
ticles in pulsatile and oscillatory systems [30], and
(iii) cloud formation and deposition of nanoparticles
[30]. Furthermore, there are many promising extensions
to the modelling approach proposed here, e.g., to self-
propelled particles, modelling bacteria, multiple particle
species, anisotropic particles, and the inclusion of an ex-
ternal flow field, as would be required in modelling blood
and drug-laden nanoparticle movement in blood. Similar
approaches should also be highly relevant in granular
media, ion transport, and other multiphase systems.
We thank Petr Yatsyshin for stimulating discussions

regarding free-energy functionals. We are grateful to the
European Research Council via Advanced Grant
No. 247031, the Rotary Clubs Darmstadt, Darmstadt-
Bergstraße, and Darmstadt-Kranichstein, the European
Framework 7 via Grant No. 214919 (Multiflow) and the
Engineering and Physical Sciences Research Council of
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research.
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