1,975 research outputs found

    Properties of singularities in (phantom) dark energy universe

    Full text link
    The properties of future singularities are investigated in the universe dominated by dark energy including the phantom-type fluid. We classify the finite-time singularities into four classes and explicitly present the models which give rise to these singularities by assuming the form of the equation of state of dark energy. We show the existence of a stable fixed point with an equation of state w<−1w<-1 and numerically confirm that this is actually a late-time attractor in the phantom-dominated universe. We also construct a phantom dark energy scenario coupled to dark matter that reproduces singular behaviors of the Big Rip type for the energy density and the curvature of the universe. The effect of quantum corrections coming from conformal anomaly can be important when the curvature grows large, which typically moderates the finite-time singularities.Comment: 17 pages, 6 figures, references are added, version to appear in Physical Review

    Models for Little Rip Dark Energy

    Get PDF
    We examine in more detail specific models which yield a little rip cosmology, i.e., a universe in which the dark energy density increases without bound but the universe never reaches a finite-time singularity. We derive the conditions for the little rip in terms of the inertial force in the expanding universe and present two representative models to illustrate in more detail the difference between little rip models and those which are asymptotically de Sitter. We derive conditions on the equation of state parameter of the dark energy to distinguish between the two types of models. We show that coupling between dark matter and dark energy with a little rip equation of state can alter the evolution, changing the little rip into an asymptotic de Sitter expansion. We give conditions on minimally-coupled phantom scalar field models and on scalar-tensor models that indicate whether or not they correspond to a little rip expansion. We show that, counterintuitively, despite local instability, a little-rip cosmology has an infinite lifetime.Comment: LaTeX, 10 pages, no figure, version to appear in Phys.Lett

    Observation of a half step magnetization in the {Cu-3}-type triangular spin ring

    Get PDF
    We report pulsed field magnetization and ESR experiments on a {Cu-3} nanomagnet, where antiferromagnetically coupled Cu2+ (S=1/2) ions form a slightly distorted triangle. The remarkable feature is the observation of a half step magnetization, hysteresis loops, and an asymmetric magnetization between a positive and a negative field in a fast sweeping external field. This is attributed to an adiabatic change of magnetization. The energy levels determined by ESR unveil that the different mixing nature of a spin chirality of a total S=1/2 Kramers doublet by virtue of Dzyaloshinskii-Moriya interactions is decisive for inducing half step magnetization.</p

    Submillimeter Wave ESR Study of Spin Gap Excitations in CuGeO3

    Full text link
    Transitions between the ground singlet state to the excited triplet state has been observed in CuGeO3 by means of submillimeter wave electron spin resonance. The strong absorption intensity shows the break down of the selection rule. The energy gap at zero field is evaluated to be 570 GHz(2.36 meV) and this value is nearly identical to the gap at the zone center observed by inelastic neutron scattering. The absorption intensity shows strong field orientation dependence but shows no significant dependence on magnetic field intensity. These features have been explained by considering the existence of Dzyaloshinsky-Moriya (DM) antisymmetric exchange interaction. The doping effect on this singlet-triplet excitation has been also studied. A drastic broadening of the absorption line is observed by the doping of only 0.5 % of Si.Comment: 6 pages, 8figures submitted to J. Phys. Soc. Jp

    String versus Einstein frame in an AdS/CFT induced quantum dilatonic brane-world universe

    Get PDF
    AdS/CFT induced quantum dilatonic brane-world where 4d boundary is flat or de Sitter (inflationary) or Anti-de Sitter brane is considered. The classical brane tension is fixed but boundary QFT produces the effective brane tension via the account of corresponding conformal anomaly induced effective action. This results in inducing of brane-worlds in accordance with AdS/CFT set-up as warped compactification. The explicit, independent construction of quantum induced dilatonic brane-worlds in two frames: string and Einstein one is done. It is demonstrated their complete equivalency for all quantum cosmological brane-worlds under discussion, including several examples of classical brane-world black holes. This is different from quantum corrected 4d dilatonic gravity where de Sitter solution exists in Einstein but not in Jordan (string) frame. The role of quantum corrections on massive graviton perturbations around Anti-de Sitter brane is briefly discussed.Comment: LaTeX file, 24 pages, minor changes to match with published versio

    Unified approach to study quantum properties of primordial black holes, wormholes and of quantum cosmology

    Full text link
    We review the anomaly induced effective action for dilaton coupled spinors and scalars in large N and s-wave approximation. It may be applied to study the following fundamental problems: construction of quantum corrected black holes (BHs), inducing of primordial wormholes in the early Universe (this effect is confirmed) and the solution of initial singularity problem. The recently discovered anti-evaporation of multiple horizon BHs is discussed. The existance of such primordial BHs may be interpreted as SUSY manifestation. Quantum corrections to BHs thermodynamics maybe also discussed within such scheme.Comment: LaTeX file and two eps files, to appear in MPLA, Brief Review

    Critical gravity with a scalar field in four dimensions

    Full text link
    We consider the critical gravity theory with a scalar field in four dimensions. We find that this theory has the solution corresponding to the de Sitter (dS), anti-de Sitter (AdS), and Minkowski background depending on whether the action includes the cosmological term or not. The Minkowski background is the solution which cannot be obtained in the model without a scalar field. At the critical point, we show that the Abbott-Deser (AD) mass of the Schwarzschild-de Sitter (SdS) black hole and the energy for the massless graviton vanish, whose situation is not changed from the model without a scalar field.Comment: 6 page

    Magnetic characterization of the frustrated three-leg ladder compound [(CuCl2tachH)3Cl]Cl2

    Full text link
    We report the magnetic features of a new one-dimensional stack of antiferromagnetically coupled equilateral copper(II) triangles. High-field magnetization measurements show that the interaction between the copper triangles is of the same order of magnitude as the intra-triangle exchange although only coupled via hydrogen bonds. The infinite chain turns out to be an interesting example of a frustrated cylindrical three-leg ladder with competing intra- and inter-triangle interactions. We demonstrate that the ground state is a spin singlet which is gaped from the triplet excitation.Comment: 6 pages, 9 figures, revised version submitted to Phys. Rev. B. More information at http://obelix.physik.uni-osnabrueck.de/~schnack

    New mechanism to cross the phantom divide

    Full text link
    Recently, type Ia supernovae data appear to support a dark energy whose equation of state ww crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in the gravity with an additional inverse power-law term of Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. Some analytical solutions with w<−1w<-1 or w>−1w>-1 are obtained. A minimal coupled scalar with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are investigated via numerical methods, respectively. All these potentials lead to the crossing behavior. We show that it is a robust result which is hardly dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the published versio

    ESR investigation on the Breather mode and the Spinon-Breather dynamical crossover in Cu Benzoate

    Full text link
    A new elementary-excitation, the so called "breather excitation", is observed directly by millimeter-submillimeter wave electron spin resonance (ESR) in the Heisenberg quantum spin-chain Cu benzoate, in which a field-induced gap is found recently by specific heat and neutron scattering measurements. Distinct anomalies were found in line width and in resonance field around the "dynamical crossover" regime between the gap-less spinon-regime and the gapped breather-regime. When the temperature becomes sufficiently lower than the energy gap, a new ESR-line with very narrow line-width is found, which is the manifestation of the breather excitation. The non-linear field dependence of the resonance field agrees well with the theoretical formula of the first breather-excitation proposed by Oshikawa and Affleck. The present work establishes experimentally for the first time that a sine-Gordon model is applicable to explain spin dynamics in a S=1/2 Heisenberg spin chain subjected to staggered field even in high fields.Comment: Revtex, 4 pages, 4 figures, submitted to Phys. Rev. Let
    • …
    corecore