1,611 research outputs found
Reaction cross-section predictions for nucleon induced reactions
A microscopic calculation of the optical potential for nucleon-nucleus
scattering has been performed by explicitly coupling the elastic channel to all
the particle-hole (p-h) excitation states in the target and to all relevant
pickup channels. These p-h states may be regarded as doorway states through
which the flux flows to more complicated configurations, and to long-lived
compound nucleus resonances. We calculated the reaction cross sections for the
nucleon induced reactions on the targets Ca, Ni, Zr and
Sm using the QRPA description of target excitations, coupling to all
inelastic open channels, and coupling to all transfer channels corresponding to
the formation of a deuteron. The results of such calculations were compared to
predictions of a well-established optical potential and with experimental data,
reaching very good agreement. The inclusion of couplings to pickup channels
were an important contribution to the absorption. For the first time,
calculations of excitations account for all of the observed reaction
cross-sections, at least for incident energies above 10 MeV.Comment: 6 pages, 6 figures. Submitted to INPC 2010 Conference Proceeding
Towards an optical potential for rare-earths through coupled channels
The coupled-channel theory is a natural way of treating nonelastic channels,
in particular those arising from collective excitations, defined by nuclear
deformations. Proper treatment of such excitations is often essential to the
accurate description of reaction experimental data. Previous works have applied
different models to specific nuclei with the purpose of determining
angular-integrated cross sections. In this work, we present an extensive study
of the effects of collective couplings and nuclear deformations on integrated
cross sections as well as on angular distributions in a consistent manner for
neutron-induced reactions on nuclei in the rare-earth region. This specific
subset of the nuclide chart was chosen precisely because of a clear static
deformation pattern. We analyze the convergence of the coupled-channel
calculations regarding the number of states being explicitly coupled. Inspired
by the work done by Dietrich \emph{et al.}, a model for deforming the spherical
Koning-Delaroche optical potential as function of quadrupole and hexadecupole
deformations is also proposed. We demonstrate that the obtained results of
calculations for total, elastic and inelastic cross sections, as well as
elastic and inelastic angular distributions correspond to a remarkably good
agreement with experimental data for scattering energies above around a few
MeV.Comment: 7 pages, 6 figures. Submitted to the proceedings of the XXXVI
Reuni\~ao de Trabalho de F\'{\i}sica Nuclear no Brasil (XXXVI Brazilian
Workshop on Nuclear Physics), held in Maresias, S\~ao Paulo, Brazil in
September 2013, which should be published on AIP Conference Proceeding
Series. arXiv admin note: substantial text overlap with arXiv:1311.1115,
arXiv:1311.042
Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size
The kinetic energy budget of the atmosphere's meridional circulation cells is
analytically assessed. In the upper atmosphere kinetic energy generation grows
with increasing surface temperature difference \$\Delta T_s\$ between the cold
and warm ends of a circulation cell; in the lower atmosphere it declines. A
requirement that kinetic energy generation is positive in the lower atmosphere
limits the poleward cell extension \$L\$ of Hadley cells via a relationship
between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper
limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$.
This pattern is demonstrated here using monthly data from MERRA re-analysis.
Kinetic energy generation along air streamlines in the boundary layer does not
exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero
for the largest observed \$L\$ at 2~km height. The limited meridional cell size
necessitates the appearance of heat pumps -- circulation cells with negative
work output where the low-level air moves towards colder areas. These cells
consume the positive work output of the heat engines -- cells where the
low-level air moves towards the warmer areas -- and can in theory drive the
global efficiency of atmospheric circulation down to zero. Relative
contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation
are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta
p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the
net kinetic power output on Earth is dominated by surface pressure gradients,
with minor net kinetic energy generation in the upper atmosphere. The role of
condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more
discussion and a new figure (Fig. 4) added; in Fig. 3 the previously
invisible dots (observations) can now be see
A study on elasto-plastic impact friction
A purpose-built pendulum machine was used to study the oblique impact and the behaviour of the surface layers of a normalized low alloy steel subjected to the impact of hard [alpha]-alumina balls. The effect of relative tangential velocity on impulses, restitution coefficient and impact energy loss, was analysed. The morphology of the impact indentations was characterized and related to the impulses obtained. There was lip formation in the target material with ejection of a small fragile oxidized chip, at a certain critical sliding speed. The impact duration and the impulse ratio have maximum values. These values seem to be related to the critical angle of attack, common in abrasive and erosive ductile processes. The experimental results were compared with some impact models and theories.http://www.sciencedirect.com/science/article/B6V5B-3WRC3G0-4/1/41e4c5269f22928dae6bfa3fb640fd0
Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment
We have studied the changes in the ferromagnetic behavior of graphite powder
and graphite flakes after treatment with diluted sulphuric acid. We show that
this kind of acid treatment enhances substantially the ferromagnetic
magnetization of virgin graphite micrometer size powder as well as in graphite
flakes. The anisotropic magnetoresistance (AMR) amplitude at 300 K measured in
a micrometer size thin graphite flake after acid treatment reaches values
comparable to polycrystalline cobalt.Comment: 3.2 pages, 4 figure
- …