6 research outputs found

    Fgf21 is essential for haematopoiesis in zebrafish

    No full text
    Fibroblast growth factors (Fgfs) function as key secreted signalling molecules in many developmental events. The zebrafish is a powerful model system for the investigation of embryonic vertebrate haematopoiesis. Although the effects of Fgf signalling on haematopoiesis in vitro have been reported, the functions of Fgf signalling in haematopoiesis in vivo remain to be explained. We identified Fgf21 in zebrafish embryos. Fgf21-knockdown zebrafish embryos lacked erythroid and myeloid cells but not blood vessels and lymphoid cells. The knockdown embryos had haemangioblasts and haematopoietic stem cells. However, the knockdown embryos had significantly fewer myeloid and erythroid progenitor cells. In contrast, Fgf21 had no significant effect on cell proliferation and apoptosis in the intermediate cell mass. These results indicate that Fgf21 is a newly identified factor essential for the determination of myelo-erythroid progenitor cell fate in vivo

    Vascular heterogeneity and specialization in development and disease

    No full text
    Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease

    Vascular heterogeneity and specialization in development and disease

    No full text
    corecore