91 research outputs found

    Shock waves in strongly coupled plasmas

    Full text link
    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS5AdS_5 space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks we find the dual metric in a derivative expansion and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular we find that, when the velocity of the fluid relative to the shock approaches the speed of light v1v\to 1 the penetration depth \ell scales as (1v2)1/4\ell\sim (1-v^2)^{1/4}. We compare the results with second order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.Comment: 47 pages, 8 figures; v2:typos corrected, references adde

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Holographic Gravitational Anomaly and Chiral Vortical Effect

    Full text link
    We analyze a holographic model with a pure gauge and a mixed gauge-gravitational Chern-Simons term in the action. These are the holographic implementations of the usual chiral and the mixed gauge-gravitational anomalies in four dimensional field theories with chiral fermions. We discuss the holographic renormalization and show that the gauge-gravitational Chern-Simons term does not induce new divergences. In order to cancel contributions from the extrinsic curvature at a boundary at finite distance a new type of counterterm has to be added however. This counterterm can also serve to make the Dirichlet problem well defined in case the gauge field strength vanishes on the boundary. A charged asymptotically AdS black hole is a solution to the theory and as an application we compute the chiral magnetic and chiral vortical conductivities via Kubo formulas. We find that the characteristic term proportional to T^2 is present also at strong coupling and that its numerical value is not renormalized compared to the weak coupling result.Comment: 27 pages, no figure

    Jet quenching

    Full text link
    We present a comprehensive review of the physics of hadron and jet production at large transverse momentum in high-energy nucleus-nucleus collisions. Emphasis is put on experimental and theoretical "jet quenching" observables that provide direct information on the (thermo)dynamical properties of hot and dense QCD matter.Comment: Springer Verlag. Landolt-Boernstein Vol. 1-23A. 49 pages. 36 figures. Minor corrections & references adde

    J/psi production from proton-proton collisions at sqrt(s) = 200 GeV

    Get PDF
    J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.Comment: 326 authors, 6 pages text, 4 figures, 1 table, RevTeX 4. To be submitted to PRL. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore