468 research outputs found

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Female Genitalia Concealment Promotes Intimate Male Courtship in a Water Strider

    Get PDF
    Violent coercive mating initiation is typical for animals with sexual conflict over mating. In these species, the coevolutionary arms-race between female defenses against coercive mating and male counter-adaptations for increased mating success leads to coevolutionary chases of male and female traits that influence the mating. It has been controversial whether one of the sexes can evolve traits that allow them to “win” this arms race. Here, we use morphological analysis (traditional and scanning electron micrographs), laboratory experiments and comparative methods to show how females of a species characterized by typical coercive mating initiation appear to “win” a particular stage of the sexual conflict by evolving morphology to hide their genitalia from direct, forceful access by males. In an apparent response to the female morphological adaptation, males of this species added to their typically violent coercive mounting of the female new post-mounting, pre-copulatory courtship signals produced by tapping the water's surface with the mid-legs. These courtship signals are intimate in the sense that they are aimed at the female, on whom the male is already mounted. Females respond to the signals by exposing their hidden genitalia for copulatory intromission. Our results indicate that the apparent victory of coevolutionary arms race by one sex in terms of morphology may trigger evolution of a behavioral phenotype in the opposite sex

    Two Earth-sized planets orbiting Kepler-20

    Get PDF
    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011; Published online 20 December 201

    Transit Photometry as an Exoplanet Discovery Method

    Full text link
    Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method's strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems, and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.Comment: Review chapte

    Evolution of a Novel Appendage Ground Plan in Water Striders Is Driven by Changes in the Hox Gene Ultrabithorax

    Get PDF
    Water striders, a group of semi-aquatic bugs adapted to life on the water surface, have evolved mid-legs (L2) that are long relative to their hind-legs (L3). This novel appendage ground plan is a derived feature among insects, where L2 function as oars and L3 as rudders. The Hox gene Ultrabithorax (Ubx) is known to increase appendage size in a variety of insects. Using gene expression and RNAi analysis, we discovered that Ubx is expressed in both L2 and L3, but Ubx functions to elongate L2 and to shorten L3 in the water strider Gerris buenoi. Therefore, within hemimetabolous insects, Ubx has evolved a new expression domain but maintained its ancestral elongating function in L2, whereas Ubx has maintained its ancestral expression domain but evolved a new shortening function in L3. These changes in Ubx expression and function may have been a key event in the evolution of the distinct appendage ground plan in water striders

    Zanamivir Conjugated to Poly-L-Glutamine is Much More Active Against Influenza Viruses in Mice and Ferrets Than the Drug Itself

    Get PDF
    Purpose: Previously, polymer-attached zanamivir had been found to inhibit influenza A viruses in vitro far better than did small-molecule zanamivir (1) itself. The aim of this study was to identify in vitro—using the plaque reduction assay—a highly potent 1-polymer conjugate, and subsequently test its antiviral efficacy in vivo. Methods: By examining the structure-activity relationship of 1-polymer conjugates in the plaque assay, we have determined that the most potent inhibitor against several representative influenza virus strains has a neutral high-molecular-weight backbone and a short alkyl linker. We have examined this optimal polymeric inhibitor for efficacy and immunogenicity in the mouse and ferret models of infection. Results: 1 attached to poly-L-glutamine is an effective therapeutic for established influenza infection in ferrets, reducing viral titers up to 30-fold for 6 days. There is also up to a 190-fold reduction in viral load when the drug is used as a combined prophylactic/therapeutic in mice. Additionally, we see no evidence that the drug conjugate stimulates an immune response in mice upon repeat administration. Conclusions: 1 attached to a neutral high-molecular-weight backbone through a short alkyl linker drastically reduced both in vitro and in vivo titers compared to those observed with 1 itself. Thus, further development of this polymeric zanamivir for the mitigation of influenza infection seems warranted.National Institutes of Health (U.S.) (Grant U01-AI074443

    APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles

    Get PDF
    Animal studies suggest that the apolipoprotein E ε4 (APOEε4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOEε4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-β (Aβ; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOEε4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for Aβ and tau deposition. Furthermore, microglial activation mediated the Aβ-independent effects of APOEε4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOEε4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOEε4 genotype exerts Aβ-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition

    Does delayed measurement affect patient reports of provider performance? Implications for performance measurement of medical assistance with tobacco cessation: A Dental PBRN study

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>We compared two methods of measuring provider performance of tobacco control activities: immediate "exit cards" versus delayed telephone follow-up surveys. Current standards, e.g. HEDIS, use delayed patient measures that may over or under-estimate overall performance.</p> <p>Methods:</p> <p>Patients completed exit cards in 60 dental practices immediately after a visit to measure whether the provider "asked" about tobacco use, and "advised" the patient to quit. One to six months later patients were asked the same questions by telephone survey. Using the exit cards as the standard, we quantified performance and calculated sensitivity (agreement of those responding yes on telephone surveys compared with exit cards) and specificity (agreement of those responding no) of the delayed measurement.</p> <p>Results:</p> <p>Among 150 patients, 21% reporting being asked about tobacco use on the exit cards and 30% reporting being asked in the delayed surveys. The sensitivity and specificity were 50% and 75%, respectively. Similarly, among 182 tobacco users, 38% reported being advised to quit on the exit cards and this increased to 51% on the delayed surveys. The sensitivity and specificity were 75% and 64%, respectively. Increasing the delay from the visit to the telephone survey resulted in increasing disagreement.</p> <p>Conclusion:</p> <p>Patient reports differed considerably in immediate versus delayed measures. These results have important implications because they suggest that our delayed measures may over-estimate performance. The immediate exit cards should be included in the armamentarium of tools for measuring providers' performance of tobacco control, and perhaps other service delivery.</p

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore