15 research outputs found

    Chagasic Thymic Atrophy Does Not Affect Negative Selection but Results in the Export of Activated CD4+CD8+ T Cells in Severe Forms of Human Disease

    Get PDF
    Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease

    Metallophilic macrophages are fully developed in the thymus of autoimmune regulator (Aire)-deficient mice

    No full text
    Copyright © Springer-Verlag 2009 Thymic metallophilic macrophages represent a significant component in the thymus physiology. Recently, we showed their presence to be dependent on functional lymphotoxin-β receptor (LTβR) signaling pathway. However, it is unknown whether the development of metallophilic macrophages also requires the Autoimmune regulator (Aire) transcription factor, as suggested by some studies for medullary thymic epithelial cells, or perhaps the presence of Aire-expressing thymic epithelial cells themselves. Therefore, we investigated the presence of metallophilic macrophages in Aire-deficient thymus. Our study shows that the metallophilic macrophages are fully developed in the Aire-deficient thymus; their development is not regulated via Aire transcription factor and does not require the presence of Aire-expressing epithelial cells. On the contrary, in alymphoplasia (ALY) mice (deficient in nuclear factor-kappaB-inducing kinase, NIK), which we used as negative control, thymic metallophilic macrophages are completely lacking, similarly as in LTβR-deficient animals. Together, these results show that the development/maintenance of thymic metallophilic macrophages is executed via LTβR circumventing the Aire transcription factor. Thus, we shed a new light on the molecular requirements for development of these cells and also show that LTβR pathway is a common developmental regulator of metallophilic macrophages in different lymphatic organs (i.e., thymus and spleen).Thymic metallophilic macrophages represent a significant component in the thymus physiology. Recently, we showed their presence to be dependent on functional lymphotoxin-beta receptor (LT beta R) signaling pathway. However, it is unknown whether the development of metallophilic macrophages also requires the Autoimmune regulator (Aire) transcription factor, as suggested by some studies for medullary thymic epithelial cells, or perhaps the presence of Aire-expressing thymic epithelial cells themselves. Therefore, we investigated the presence of metallophilic macrophages in Aire-deficient thymus. Our study shows that the metallophilic macrophages are fully developed in the Aire-deficient thymus; their development is not regulated via Aire transcription factor and does not require the presence of Aire-expressing epithelial cells. On the contrary, in alymphoplasia (ALY) mice (deficient in nuclear factor-kappaB-inducing kinase, NIK), which we used as negative control, thymic metallophilic macrophages are completely lacking, similarly as in LT beta R-deficient animals. Together, these results show that the development/maintenance of thymic metallophilic macrophages is executed via LT beta R circumventing the Aire transcription factor. Thus, we shed a new light on the molecular requirements for development of these cells and also show that LT beta R pathway is a common developmental regulator of metallophilic macrophages in different lymphatic organs (i.e., thymus and spleen).Novica M. Milićević, Živana Milićević, Miloš D. Miljković, Milica Labudović-Borović, Martti Laan, Pärt Peterson, Kai Kisand, Hamish S. Scott, Ning Qu and Jürgen Westerman

    Growth of Murine Splenic Tissue Is Suppressed by Lymphotoxin β-Receptor Signaling (LTβR) Originating from Splenic and Non-Splenic Tissues.

    No full text
    Development and maintenance of secondary lymphoid organs such as lymph nodes and spleen essentially depend on lymphotoxin β-receptor (LTβR) signaling. It is unclear, however, by which molecular mechanism their size is limited. Here, we investigate whether the LTβR pathway is also growth suppressing. By using splenic tissue transplantation it is possible to analyze a potential contribution of LTβR signaling inside and outside of the implanted tissue. We show that LTβR signaling within the endogenous spleen and within non-splenic tissues both significantly suppressed the regeneration of implanted splenic tissue. The suppressive activity positively correlated with the total number of LTβR expressing cells in the animal (regenerate weights of 115 ± 8 mg in LTβR deficient recipients and of 12 ± 9 mg in wild-type recipients), affected also developed splenic tissue, and was induced but not executed via LTβR signaling. Two-dimensional differential gel electrophoresis and subsequent mass spectrometry of stromal splenic tissue was applied to screen for potential factors mediating the LTβR dependent suppressive activity. Thus, LTβR dependent growth suppression is involved in regulating the size of secondary lymphoid organs, and might be therapeutically used to eradicate tertiary lymphoid tissues during autoimmune diseases

    Thymus and aging: morphological, radiological, and functional overview.

    No full text
    5reservedmixedRezzani R.; Nardo L.; Favero G.; Peroni M.; Rodella L.F.Rezzani, Rita; Nardo, L.; Favero, Gaia; Peroni, M.; Rodella, Luigi Fabrizi
    corecore