227 research outputs found

    Genetically Predicted Blood Pressure and Risk of Atrial Fibrillation.

    Get PDF
    Observational studies have shown an association between hypertension and atrial fibrillation (AF). Aggressive blood pressure management in patients with known AF reduces overall arrhythmia burden, but it remains unclear whether hypertension is causative for AF. To address this question, this study explored the relationship between genetic predictors of blood pressure and risk of AF. We secondarily explored the relationship between genetically proxied use of antihypertensive drugs and risk of AF. Two-sample Mendelian randomization was performed using an inverse-variance weighted meta-analysis with weighted median Mendelian randomization and Egger intercept tests performed as sensitivity analyses. Summary statistics for systolic blood pressure, diastolic blood pressure, and pulse pressure were obtained from the International Consortium of Blood Pressure and the UK Biobank discovery analysis and AF from the 2018 Atrial Fibrillation Genetics Consortium multiethnic genome-wide association studies. Increases in genetically proxied systolic blood pressure, diastolic blood pressure, or pulse pressure by 10 mm Hg were associated with increased odds of AF (systolic blood pressure: odds ratio [OR], 1.17 [95% CI, 1.11-1.22]; P=1×10-11; diastolic blood pressure: OR, 1.25 [95% CI, 1.16-1.35]; P=3×10-8; pulse pressure: OR, 1.1 [95% CI, 1.0-1.2]; P=0.05). Decreases in systolic blood pressure by 10 mm Hg estimated by genetic proxies of antihypertensive medications showed calcium channel blockers (OR, 0.66 [95% CI, 0.57-0.76]; P=8×10-9) and β-blockers (OR, 0.61 [95% CI, 0.46-0.81]; P=6×10-4) decreased the risk of AF. Blood pressure-increasing genetic variants were associated with increased risk of AF, consistent with a causal relationship between blood pressure and AF. These data support the concept that blood pressure reduction with calcium channel blockade or β-blockade could reduce the risk of AF

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    Self-Organization of Anastral Spindles by Synergy of Dynamic Instability, Autocatalytic Microtubule Production, and a Spatial Signaling Gradient

    Get PDF
    Assembly of the mitotic spindle is a classic example of macromolecular self-organization. During spindle assembly, microtubules (MTs) accumulate around chromatin. In centrosomal spindles, centrosomes at the spindle poles are the dominating source of MT production. However, many systems assemble anastral spindles, i.e., spindles without centrosomes at the poles. How anastral spindles produce and maintain a high concentration of MTs in the absence of centrosome-catalyzed MT production is unknown. With a combined biochemistry-computer simulation approach, we show that the concerted activity of three components can efficiently concentrate microtubules (MTs) at chromatin: (1) an external stimulus in form of a RanGTP gradient centered on chromatin, (2) a feed-back loop where MTs induce production of new MTs, and (3) continuous re-organization of MT structures by dynamic instability. The mechanism proposed here can generate and maintain a dissipative MT super-structure within a RanGTP gradient

    Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus.

    Get PDF
    The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0-16 (95% Credible Interval (CI)) for the dengue outbreak and 4.8-14 (95% CI) for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28-102 (95% CI). We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%-1.9%) than that of dengue (95% CI: 47%-61%). We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another

    A Preclinical Assessment of Neural Stem Cells as Delivery Vehicles for Anti-Amyloid Therapeutics

    Get PDF
    Transplantation of neural stems cells (NSCs) could be a useful means to deliver biologic therapeutics for late-stage Alzheimer's disease (AD). In this study, we conducted a small preclinical investigation of whether NSCs could be modified to express metalloproteinase 9 (MMP9), a secreted protease reported to degrade aggregated Aβ peptides that are the major constituents of the senile plaques. Our findings illuminated three issues with using NSCs as delivery vehicles for this particular application. First, transplanted NSCs generally failed to migrate to amyloid plaques, instead tending to colonize white matter tracts. Second, the final destination of these cells was highly influenced by how they were delivered. We found that our injection methods led to cells largely distributing to white matter tracts, which are anisotropic conduits for fluids that facilitate rapid distribution within the CNS. Third, with regard to MMP9 as a therapeutic to remove senile plaques, we observed high concentrations of endogenous metalloproteinases around amyloid plaques in the mouse models used for these preclinical tests with no evidence that the NSC-delivered enzymes elevated these activities or had any impact. Interestingly, MMP9-expressing NSCs formed substantially larger grafts. Overall, we observed long-term survival of NSCs in the brains of mice with high amyloid burden. Therefore, we conclude that such cells may have potential in therapeutic applications in AD but improved targeting of these cells to disease-specific lesions may be required to enhance efficacy

    Intestinal Perforations in Behçet’s Disease

    Get PDF
    Behçet’s disease accompanied by intestinal involvement is called intestinal Behçet’s disease. The intestinal ulcers of Behçet’s disease are usually multiple and scattered and tend to perforate easily, so that many patients require emergency operation. The aim of this study is to determine the extent of surgical resection necessary to prevent reperforation and to point out the findings of concurrent oral and genital ulcers and multiple intestinal perforations in all patients of our series. During a 25-year study period, information of 125 Behçet’s disease cases was gathered. Among the 82 patients who were diagnosed with intestinal Behçet’s disease, 22 cases had intestinal perforations needing emergency laparotomy. We investigated and analyzed these cases according to the patients’ demographic characteristics, clinical presentations, laboratory data, and surgical outcome. There were 14 men and 8 women ranging from 22 to 65 years of age. Nine cases were diagnosed preoperatively, and the diagnoses were confirmed in all 22 cases during the surgical intervention. Surgical resection was performed in every patient, with right hemicolectomy and ileocecal resection in 11 cases, partial ileum resection in 8 cases with two reperforations, and ileocecal resection in 3 cases with one reperforation

    Does Community Context Have an Important Impact on Divorce Risk? A Fixed-Effects Study of Twenty Norwegian First-Marriage Cohorts

    Get PDF
    The decision to divorce may be affected by the characteristics of the local community. Community characteristics may be barriers to divorce, or they may increase the attractiveness of divorcing (e.g., access to a good remarriage market), but our knowledge of such influences is sparse. This study examines two such community-level factors: socio-economic conditions and the local marriage market. In this study, discrete-time hazard models with community-level fixed effects are estimated using register-based data on Norwegian first marriages during the period from 1980 to 1999, with longitudinal information on both the community and couple levels (N = 283,493). The results show that there are important community-level influences on couples’ divorce risk, but these change dramatically when fixed effects are introduced

    A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674]

    Get PDF
    BACKGROUND: Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease. METHODS: The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test. DISCUSSION: A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition

    An association between polymorphism of the heme oxygenase-1 and -2 genes and age-related macular degeneration

    Get PDF
    Iron may be implicated in the generation of oxidative stress by the catalyzing the Haber–Weiss or Fenton reaction. On the other hand, oxidative stress has been implicated in the pathogenesis of age-related macular degeneration (AMD) and heme oxygenase-1 (HO-1), encoded by the HMOX1 gene and heme oxygenase-2 (HO-2), encoded by the HMOX2 gene are important markers of iron-related oxidative stress and its consequences. Therefore, variability of the HMOX1 and HMOX2 genes might be implicated in the pathogenesis of AMD through the modulation of the cellular reaction to oxidative stress. In the present work, we investigated the association between AMD and a G → C transversion at the 19 position in the HMOX1 gene (the 19G>C-HMOX1 polymorphism, rs2071747) and a A → G transition at the −42 + 1444 position in the HMOX2 gene (the −42 + 1444A>G-HMOX2 polymorphism, rs2270363) and its modulation by some environmental factors. 279 patients with AMD and 105 controls were recruited in this study and the polymorphisms were typed by restriction fragment length polymorphism and allele-specific polymerase chain reaction (PCR). We observed an association between the occurrence of dry AMD and the G/A genotype of the −42 + 1444A>G-HMOX2 polymorphism (odds ratio (OR) 2.72), whereas the G/G genotype reduced the risk of dry AMD (OR 0.41). The G/C genotype and the C allele of the 19 G>C-HMOX1 polymorphism and the G/G genotype and the G allele of the −42 + 1444A>G-HMOX2 polymorphism were associated with progression of AMD from dry to wet form (OR 4.83, 5.20, 2.55, 1.69, respectively). On the other hand, the G/G genotype and the G allele of the 19 G>C-HMOX1 polymorphism and the A/G genotype and the A allele of the −42 + 1444A>G-HMOX2 polymorphism protected against AMD progression (OR 0.19, 0.19, 0.34, 0.59, respectively). Therefore, the 19G>C-HMOX1 and the −42 + 1444A>G-HMOX2 polymorphisms may be associated with the occurrence and progression of AMD

    Reversal of Cocaine-Conditioned Place Preference through Methyl Supplementation in Mice: Altering Global DNA Methylation in the Prefrontal Cortex

    Get PDF
    Analysis of global methylation in cells has revealed correlations between overall DNA methylation status and some biological states. Recent studies suggest that epigenetic regulation through DNA methylation could be responsible for neuroadaptations induced by addictive drugs. However, there is no investigation to determine global DNA methylation status following repeated exposure to addictive drugs. Using mice conditioned place preference (CPP) procedure, we measured global DNA methylation level in the nucleus accumbens (NAc) and the prefrontal cortex (PFC) associated with drug rewarding effects. We found that cocaine-, but not morphine- or food-CPP training decreased global DNA methylation in the PFC. Chronic treatment with methionine, a methyl donor, for 25 consecutive days prior to and during CPP training inhibited the establishment of cocaine, but not morphine or food CPP. We also found that both mRNA and protein level of DNMT (DNA methytransferase) 3b in the PFC were downregulated following the establishment of cocaine CPP, and the downregulation could be reversed by repeated administration of methionine. Our study indicates a crucial role of global PFC DNA hypomethylation in the rewarding effects of cocaine. Reversal of global DNA hypomethylation could significantly attenuate the rewarding effects induced by cocaine. Our results suggest that methionine may have become a potential therapeutic target to treat cocaine addiction
    corecore