13 research outputs found

    A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd<sub>2 </sub>[<it>S<sub>(-)</sub></it>C<sup>2</sup>, N-dmpa]<sub>2 </sub>(ÎĽ-dppe)Cl<sub>2</sub>} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies.</p> <p>Methods</p> <p>B16F10-Nex2 cells were treated <it>in vitro </it>with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated <it>in vitro </it>with C7a.</p> <p>Results</p> <p>Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages <it>in vitro</it>, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells.</p> <p>Conclusions</p> <p>The cyclopalladated C7a complex is an effective chemotherapeutic anticancer compound against primary and metastatic murine and human tumors, including cisplatin-resistant cells, inducing apoptotic cell death via the intrinsic pathway.</p

    Natural products from marine invertebrates against Leishmania parasites: a comprehensive review

    No full text
    Parasitic infections by Leishmania parasites remains a severe public health problem, especially in developing countries where it is highly endemic. Chemotherapy still remains a first option for the treatment of those diseases, despite the fact that available drugs exhibit a variety of shortcomings. Thus, innovative, less toxic more affordable and effective antileishmanial agents are urgently needed. The marine environment holds an immeasurable bio- and chemical diversity, being a valuable source of natural products with therapeutic potential. As invertebrates comprise about 60 % of all marine organisms, bioprospecting this class of organisms for antileishmanial properties may unravel unique and selective hit molecules. In this context, this review covers results on the literature of marine invertebrate extracts and pure compounds evaluated against Leishmania parasites mainly by in vitro methods. It comprises results obtained from the phyla Porifera, Cnidaria, Bryozoa (Ectoprota), Mollusca, Echinodermata, Annelida, Cetnophora, Platyhelminthes, sub phyla Crustacea (phylum Arthropoda) and Tunicata (phylum Chordata). Moreover, structure-activity relationships and possible mechanisms of action are mentioned, whenever available information is provided. About 70 species of marine invertebrates belonging to seven different phyla are included in this work. Besides a variety of crude extracts, a total of 140 pure compounds was tested against different Leishmania species. Although the research on the antileishmanial potential of marine invertebrates is in its early beginnings, promising results have been achieved that encourage further research. As more extracts and compounds are being screened, the possibility of finding active and selective antileishmanial molecules increases, rising new hope in the search for new treatments against leishmaniases
    corecore