26 research outputs found

    Successful reduction of intraventricular asynchrony is associated with superior response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) is generally associated with a low to moderate increase of the left ventricular ejection fraction (LVEF). In some patients, however, LVEF improves remarkably and reaches near-normal values. The aim of the present study was to further characterize these so called 'super-responders' with a special focus on the extent of intra- and interventricular asynchrony before and after device implantation compared to average responders.</p> <p>Methods</p> <p>37 consecutive patients who underwent CRT device implantation according to current guidelines were included in the study. Patients were examined by echocardiography before, one day after and six months after device implantation. Pre-defined criterion for superior response to CRT was an LVEF increase > 15% after six months.</p> <p>Results</p> <p>At follow-up, eight patients (21.6%) were identified as super-responders. There were no significant differences regarding age, gender, prevalence of ischemic heart disease and LVEF between average and super-responders at baseline. After six months, LVEF had significantly increased from 26.7% ± 5.7% to 33.1% ± 7.9% (<it>p </it>< 0.001) in average and from 24.0% ± 6.7% to 50.3% ± 7.4% (<it>p </it>< 0.001) in super-responders. Both groups showed a significant reduction of QRS duration as well as LV end-diastolic and -systolic volumes under CRT. At baseline, the interventricular mechanical delay (IVMD) was 53.7 ± 20.9 ms in average and 56.9 ± 22.4 ms in super-responders - representing a similar extent of interventricular asynchrony in both groups (<it>p </it>= 0.713). CRT significantly reduced the IVMD to 20.3 ± 15.7 (<it>p </it>< 0.001) in average and to 19.8 ± 15.9 ms (<it>p </it>= 0.013) in super-responders with no difference between both groups (<it>p </it>= 0.858). As a marker for intraventricular asynchrony, we assessed the longest intraventricular delay between six basal LV segments. At baseline, there was no difference between average (86.2 ± 30.5 ms) and super-responders (78.8 ± 23.6 ms, <it>p </it>= 0.528). CRT significantly reduced the longest intraventricular delay in both groups - with a significant difference between average (66.2 ± 36.2 ms) and super-responders (32.5 ± 18.3 ms, <it>p </it>= 0.022). Multivariate logistic regression analysis identified the longest intraventricular delay one day after device implantation as an independent predictor of superior response to CRT (<it>p </it>= 0.038).</p> <p>Conclusions</p> <p>A significant reduction of the longest intraventricular delay correlates with superior response to CRT.</p

    A modified echocardiographic protocol with intrinsic plausibility control to determine intraventricular asynchrony based on TDI and TSI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Established methods to determine asynchrony suffer from high intra- and interobserver variability and failed to improve patient selection for cardiac resynchronization therapy (CRT). Thus, there is a need for easy and robust approaches to reliably assess cardiac asynchrony.</p> <p>Methods and Results</p> <p>We performed echocardiography in 100 healthy subjects and 33 patients with left bundle branch block (LBBB). To detect intraventricular asynchrony, we combined two established methods, i.e., tissue synchronization imaging (TSI) and tissue Doppler imaging (TDI). The time intervals from the onset of aortic valve opening (AVO) to the peak systolic velocity (S') were measured separately in six basal segments in the apical four-, two-, and three-chamber view. Color-coded TSI served as an intrinsic plausibility control and helped to identify the correct S' measuring point in the TDI curves. Next, we identified the segment with the shortest AVO-S' interval. Since this segment most likely represents vital and intact myocardium it served as a reference for other segments. Segments were considered asynchronous when the delay between the segment in question and the reference segment was above the upper limit of normal delays derived from the control population. Intra- and interobserver variability were 7.0% and 7.7%, respectively.</p> <p>Conclusion</p> <p>Our results suggest that combination of TDI and TSI with intrinsic plausibility control improves intra- and interobserver variability and allows easy and reliable assessment of cardiac asynchrony.</p

    Control of style-of-faulting on spatial pattern of earthquake-triggered landslides

    Full text link
    Predictive mapping of susceptibility to earthquake-triggered landslides (ETLs) commonly uses distance to fault as spatial predictor, regardless of style-of-faulting. Here, we examined the hypothesis that the spatial pattern of ETLs is influenced by style-of-faulting based on distance distribution analysis and Fry analysis. The Yingxiu–Beichuan fault (YBF) in China and a huge number of landslides that ruptured and occurred, respectively, during the 2008 Wenchuan earthquake permitted this study because the style-of-faulting along the YBF varied from its southern to northern parts (i.e. mainly thrust-slip in the southern part, oblique-slip in the central part and mainly strike-slip in the northern part). On the YBF hanging-wall, ETLs at 4.4–4.7 and 10.3–11.5 km from the YBF are likely associated with strike- and thrust-slips, respectively. On the southern and central parts of the hanging-wall, ETLs at 7.5–8 km from the YBF are likely associated with oblique-slips. These findings indicate that the spatial pattern of ETLs is influenced by style-of-faulting. Based on knowledge about the style-of-faulting and by using evidential belief functions to create a predictor map based on proximity to faults, we obtained higher landslide prediction accuracy than by using unclassified faults. When distance from unclassified parts of the YBF is used as predictor, the prediction accuracy is 80%; when distance from parts of the YBF, classified according to style-of-faulting, is used as predictor, the prediction accuracy is 93%. Therefore, mapping and classification of faults and proper spatial representation of fault control on occurrence of ETLs are important in predictive mapping of susceptibility to ETLs

    Mapping-Biopsien im Rahmen der TURB zur CIS-Detektion - sinnvoll, obsolet oder gefährlich?

    No full text

    Sind "teaching-TURBs" onkologisch sicher?

    No full text
    corecore