10 research outputs found

    Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial mesenchymal transition (EMT) is a crucial event likely involved in dissemination of epithelial cancer cells. This process enables them to acquire migratory/invasive properties, contributing to tumor and metastatic spread. To know if this event is an early one in breast cancer, we developed a clinical trial. The aim of this protocol was to detect circulating tumor cells endowed with mesenchymal and/or stemness characteristics, at the time of initial diagnosis. Breast cancer patients (n = 61), without visceral or bone metastasis were enrolled and analysis of these dedifferentiated circulating tumor cells (ddCTC) was realized.</p> <p>Methods</p> <p><it>AdnaGen </it>method was used for enrichment cell selection. Then, ddCTC were characterized by RT-PCR study of the following genes: PI3Kα, Akt-2, Twist1 (EMT markers) and ALDH1, Bmi1 and CD44 (stemness indicators).</p> <p>Results</p> <p>Among the studied primary breast cancer cohort, presence of ddCTC was detected in 39% of cases. This positivity is independant from tumor clinicopathological factors apart from the lymph node status.</p> <p>Conclusions</p> <p>Our data uniquely demonstrated that <it>in vivo </it>EMT occurs in the primary tumors and is associated with an enhanced ability of tumor cells to intravasate in the early phase of cancer disease. These results suggest that analysis of circulating tumor cells focused on cells showing mesenchymal or stemness characteristics might facilitate assessment of new drugs in clinical trials.</p

    X-ray spectral components observed in the afterglow of GRB 130925A

    Get PDF
    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at >4σ significance, and its spectral shape varies between two observation epochs at 2 × 105 and 106 s after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch. An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (108 cm), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi/Large Area Telescope. © 2014. The American Astronomical Society. All rights reserved

    The genome-wide dynamics of purging during selfing in maize

    Get PDF
    Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferentially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall, heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected 50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes, an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations

    Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CPG of the rat spinal cord in vitro.

    Get PDF
    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM-1 \u3bcM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits

    Plasticity After Spinal Cord Injury: Relevance to Recovery and Approaches to Facilitate It

    No full text
    Motor, sensory, and autonomic functions can spontaneously return or recover to varying extents in both humans and animals, regardless of the traumatic spinal cord injury (SCI) level and whether it was complete or incomplete. In parallel, adverse and painful functions can appear. The underlying mechanisms for all of these diverse functional changes are summarized under the term plasticity. Our review will describe what is known regarding this phenomenon after traumatic SCI and focus on its relevance to motor and sensory recovery. Although it is still somewhat speculative, plasticity can be found throughout the neuraxis and includes various changes ranging from alterations in the properties of spared neuronal circuitries, intact or lesioned axon collateral sprouting, and synaptic rearrangements. Furthermore, we will discuss a selection of potential approaches for facilitating plasticity as possible SCI treatments. Because a mechanism underlying spontaneous plasticity and recovery might be motor activity and the related neuronal activity, activity-based therapies are being used and investigated both clinically and experimentally. Additional pharmacological and gene-delivery approaches, based on plasticity being dependent on the delicate balance between growth inhibition and promotion as well as the basic intrinsic growth ability of the neurons themselves, have been found to be effective alone and in combination with activity-based therapies. The positive results have to be tempered with the reality that not all plasticity is beneficial. Therefore, a tremendous number of questions still need to be addressed. Ultimately, answers to these questions will enhance plasticity’s potential for improving the quality of life for persons with SCI

    The Milky Way’s Supermassive Black Hole: How Good a Case Is It?

    No full text

    Lettuce cropping with less pesticides. A review

    No full text
    corecore