43 research outputs found

    Relationship of metabolic syndrome and its components with -844 G/A and HindIII C/G PAI-1 gene polymorphisms in Mexican children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several association studies have shown that -844 G/A and <it>HindIII </it>C/G <it>PAI-1 </it>polymorphisms are related with increase of PAI-1 levels, obesity, insulin resistance, glucose intolerance, hypertension and dyslipidemia, which are components of metabolic syndrome. The aim of this study was to analyze the allele and genotype frequencies of these polymorphisms in <it>PAI-1 </it>gene and its association with metabolic syndrome and its components in a sample of Mexican mestizo children.</p> <p>Methods</p> <p>This study included 100 children with an age range between 6-11 years divided in two groups: a) 48 children diagnosed with metabolic syndrome and b) 52 children metabolically healthy without any clinical and biochemical alteration. Metabolic syndrome was defined as the presence of three or more of the following criteria: fasting glucose levels ≥ 100 mg/dL, triglycerides ≥ 150 mg/dL, HDL-cholesterol < 40 mg/dL, obesity BMI ≥ 95<sup>th </sup>percentile, systolic blood pressure (SBP) and diastolic blood pressure (DBP) ≥ 95<sup>th </sup>percentile and insulin resistance HOMA-IR ≥ 2.4. The -844 G/A and <it>HindIII </it>C/G <it>PAI-1 </it>polymorphisms were analyzed by PCR-RFLP.</p> <p>Results</p> <p>For the -844 G/A polymorphism, the G/A genotype (OR = 2.79; 95% CI, 1.11-7.08; <it>p </it>= 0.015) and the A allele (OR = 2.2; 95% CI, 1.10-4.43; <it>p </it>= 0.015) were associated with metabolic syndrome. The -844 G/A and A/A genotypes were associated with increase in plasma triglycerides levels (OR = 2.6; 95% CI, 1.16 to 6.04; <it>p </it>= 0.02), decrease in plasma HDL-cholesterol levels (OR = 2.4; 95% CI, 1.06 to 5.42; <it>p </it>= 0.03) and obesity (OR = 2.6; 95% CI, 1.17-5.92; <it>p </it>= 0.01). The C/G and G/G genotypes of the <it>HindIII </it>C/G polymorphism contributed to a significant increase in plasma total cholesterol levels (179 vs. 165 mg/dL; <it>p </it>= 0.02) in comparison with C/C genotype.</p> <p>Conclusions</p> <p>The -844 G/A <it>PAI-1 </it>polymorphism is related with the risk of developing metabolic syndrome, obesity and atherogenic dyslipidemia, and the <it>HindIII </it>C/G <it>PAI-1 </it>polymorphism was associated with the increase of total cholesterol levels in Mexican children.</p

    MicroRNA-resistant alleles of HOMEOBOX DOMAIN-2 modify inflorescence branching and increase grain protein content of wheat

    Get PDF
    Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain
    corecore