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Abstract

Introduction Metabolic changes have been frequently associ-

ated with Huntington’s disease (HD). At the same time periph-

eral blood represents a minimally invasive sampling avenue with

little distress to Huntington’s disease patients especially when

brain or other tissue samples are difficult to collect.

Objectives We investigated the levels of 163 metabolites

in HD patient and control serum samples in order to

identify disease related changes. Additionally, we inte-

grated the metabolomics data with our previously pub-

lished next generation sequencing-based gene expression

data from the same patients in order to interconnect the

metabolomics changes with transcriptional alterations.

Methods This analysis was performed using targeted

metabolomics and flow injection electrospray ionization

tandem mass spectrometry in 133 serum samples from 97

Huntington’s disease patients (29 pre-symptomatic and 68

symptomatic) and 36 controls.

Results By comparing HD mutation carriers with controls

we identified 3 metabolites significantly changed in HD

(serine and threonine and one phosphatidylcholine—PC ae

C36:0) and an additional 8 phosphatidylcholines (PC aa

C38:6, PC aa C36:0, PC ae C38:0, PC aa C38:0, PC ae C38:6,

PC ae C42:0, PC aa C36:5 and PC ae C36:0) that exhibited a

significant association with disease severity. Using workflow

based exploitation of pathway databases and by integrating

our metabolomics data with our gene expression data from

the same patients we identified 4 deregulated phosphatidyl-

choline metabolism related genes (ALDH1B1, MBOAT1,

MTRR and PLB1) that showed significant association with the

changes in metabolite concentrations.

Conclusion Our results support the notion that phos-

phatidylcholine metabolism is deregulated in HD blood

and that these metabolite alterations are associated with

specific gene expression changes.

Keywords Metabolomics � Gene expression �
Biomarkers � Disease progression � Neurodegenerative �
Integrated analysis

1 Introduction

Huntington’s disease (HD) is an autosomal dominant

neurodegenerative disorder that presents itself through

motor dysfunction, psychiatric disturbances and cognitive
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decline. The pathology is caused by an expanded CAG

repeat in the HTT gene, resulting in a mutant huntingtin

protein (The Huntington’s Disease Collaborative Research

Group 1993). A characteristic of HD is mutant protein

aggregate formation and neuronal cell loss in the brain but

it is also known that HD patients develop peripheral tissue

symptoms such as muscle atrophy, impaired glucose tol-

erance and weight loss (Lalic et al. 2008; Zielonka et al.

2014). The mutation for HD was discovered more than

20 years ago and much is known about the underlying

disease mechanisms (Ross et al. 2014). Moreover, recent

studies show that lowering mutant huntingtin protein levels

using RNAi is a promising therapeutic approach that is

close to clinical trials (Yu et al. 2012; Evers et al. 2011).

This highlights/prompts the need for biomarkers that track

disease progression and measure clinical trial therapeutic

effectiveness.

Deregulation of energy and metabolic pathways have

been repeatedly implicated in HD (Acuna et al. 2013;

Mochel and Haller 2011; Tang et al. 2013; Johri et al.

2013). Specifically, defects in lipid homeostasis have been

proposed as contributors to disease onset (Gulati et al.

2010; Valenza and Cattaneo 2011; Sipione et al. 2002).

Additionally, total cholesterol was found to be significantly

reduced even outside the brain when human fibroblasts

were cultured in lipoprotein-deprived serum (Valenza et al.

2005). Previous studies using HD transgenic models and

human caudate samples have shown a deregulation of

genes involved in glycosphingolipid metabolism, selected

brain gangliosides as well as neutral and acidic lipids.

Additionally, Wang and colleagues were able to discover

metabolic hormonal plasma signatures in presymptomatic

and symptomatic HD patients suggesting that in HD

metabolic hormone secretion and energy regulation is

affected (Wang et al. 2014). Previous mass spectrometry

studies have shown differences in the serum metabolome

of transgenic HD mice and wild type controls with a

similar trend in human samples implicating changes in

fatty acid breakdown and certain aliphatic amino acids

(Underwood et al. 2006). Consequently such approaches

that use mass spectrometry metabolomics on brain as well

as non-nervous system tissue constitute a promising avenue

for discovering novel HD metabolomics biomarkers (Sch-

nackenberg and Beger 2007).

Longitudinal studies have shown promising results in

clinical and imaging HD biomarker discovery, but many of

these biomarkers are either expensive or subject to inter-

rater variability (Tabrizi et al. 2013). A good biomarker

should identify changes before clinical manifestation,

should be easily obtained and should respond robustly to

disease-modifying interventions. Increasingly, metabo-

lomics technology is used in biomarker studies because it

can identify intermediate biomarkers of deregulated

genomic pathways (Nishiumi et al. 2014; Wang et al.

2013). Furthermore, metabolomics identifies changes that

occur downstream of the gene expression level. This

applies particularly well in HD since it is recognized that

the mutant protein causes genome wide transcriptional

deregulation (Hodges et al. 2006; Runne et al. 2008). The

mutant huntingtin protein is ubiquitously expressed, and

gene expression deregulations can be found in various HD

tissues and organs. Furthermore, metabolite changes in

blood may reflect changes in tissues that have been in

contact with blood (Diamanti et al. 2013) and as it is

impossible to measure molecular biomarkers in the brain,

peripheral blood has been proposed as a viable alternative

(Sassone et al. 2009). Nonetheless, the cellular hetero-

geneity of blood together with the data complexity pro-

duced by non-targeted mass-spectrometric protocols, make

it difficult to quantify the levels of all metabolites simul-

taneously. Therefore, we have used a targeted metabo-

lomics approach that measures the concentration of a

selected group of HD relevant, key biological compounds

(such as amino acids, acyl carnitines, hexoses and glyc-

erophospholipids) in a semi-high throughput manner to

identify such metabolomics markers.

The aim of this study was to detect metabolic markers of

HD status and progression as well as disease deregulated

metabolic pathways. Our approach was based on targeted

mass-spectrometry using the Biocrates AbsoluteIDQTM

p150 (Romisch-Margl et al. 2012) kit to measure

metabolite levels in serum from HD carriers and controls.

We then tested for the association of the metabolite levels

with HD mutation status, and well accepted clinical pro-

gression scores and stages such as the Unified Huntington’s

Disease Rating Scale (UHDRS) total motor score (TMS)

and the total functional capacity (TFC) score based stages.

Since the integration of disparate biological data types like

metabolomics and transcriptomics can provide a more

complete picture of diseases we correlated our metabolomics

data with our publicly available whole genome gene ex-

pression profiling data from the same patient cohort and

investigated functional relationships between the metabolite

changes and the gene expression changes.

2 Materials and methods

2.1 Metabolite measurements

Metabolite concentrations were determined using the tar-

geted metabolomics kit AbsoluteIDQTM p150 (Biocrates

Life Sciences AG, Innsbruck, Austria) and flow injection

electrospray ionization tandem mass spectrometry (FIA-

ESI–MS/MS). A total of 163 different metabolites were

quantified simultaneously by the platform in 10 lL serum.
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The metabolite panel consists of 14 amino acids, Hexose

(H1), free carnitine (C0), 40 acylcarnitines (Cx:y),

hydroxylacylcarnitines (C(OH)x:y), and dicarboxylacyl-

carnitines, 15 sphingomyelins (SMx:y) and N-hydroxya-

cyloylsphingosylphosphocoline (SM(OH)x:y), 77

phosphatidylcholines (PC, aa = diacyl, ae = acyl-alkyl)

and 15 lyso-phosphatidylcholines. Lipid side chains are

denoted as Cx:y, where x represents the number of carbons

in the side chain and y the number of double bonds. The

assay procedures of the p150 kit as well as the metabolite

nomenclature have been described in detail previously

(Romisch-Margl et al. 2012). Sample handling was per-

formed by a Hamilton Microlab STARTM robot (Hamilton

Bonaduz AG, Bonaduz, Switzerland) and an Ultravap

nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.),

beside standard laboratory equipment. Mass spectrometric

(MS) analyses were done on an API 4000 LC–MS/MS

System (Sciex Deutschland GmbH, Darmstadt, Germany)

equipped with a 1200 Series HPLC (Agilent Technologies

Deutschland GmbH, Böblingen, Germany) and a HTC

PAL auto sampler (CTC Analytics, Zwingen, Switzerland)

controlled by the software Analyst 1.5. Data evaluation for

quantification of metabolite concentrations and quality

assessment was performed at the Genome Analysis Center

of the Helmholtz Zentrum München using the MetIDQTM

software package, which is an integral part of the Abso-

luteIDQTM kit. Internal standards served as reference for

the calculation of metabolite concentrations in lM.

2.2 Serum collection

Peripheral blood was collected from 29 presymptomatic,

68 symptomatic and 36 control, non-fasting individuals

with institutional review board approval and after informed

consent. For serum sample isolation, blood was collected in

BD vacutainer Z tubes (no additives) and was allowed to

clot for 1 h at room temperature. Tubes were spun at

1300 g for 10 min at room temperature, were aliquoted and

stored at -80 �C. Detailed information about the UHDRS

clinical scores and CAG repeat lengths of all the patients

and controls as well as gender age and BMI information

can be found in Supplementary File 1.

2.3 Quality controls

To ensure the robustness of downstream statistical analy-

ses, all data provided from the MetIQ software package

were subjected to three quality control steps. For the first

step the coefficient of variance was calculated for each

experimental plate. To achieve this five aliquots of a ref-

erence plasma pool were measured on each plate together

with the cohort samples. The coefficient of variance was

calculated as the standard deviation to mean ratio for all

five reference samples per metabolite and per experimental

plate. All metabolites with a mean coefficient of variance

of all plates, higher than 25 % were excluded from further

analysis. All metabolites with a missing value rate larger

than 5 % were also excluded. In the second step any out-

lying data points with a value greater than mean ± 5 SD of

all measurements for this metabolite were excluded.

Additionally, two Huntington disease samples were

excluded due to high BMI values (outliers). For samples

with less than, or equal to, three independent outlying

points only the independent data points themselves were

excluded. After these quality control steps 114 out of 163

metabolites and 133/138 samples remained. After the

above steps, when missing values were detected these were

imputed using the R package ‘‘mice’’. Finally, all

metabolite concentrations were transformed using natural

logarithm and before applying the experimental linear

modeling analysis.

2.4 Statistical analysis

To identify significant differences between the HD and

control samples, the statistical analysis software R (Version

3.1.2, http://www.r-project.org/) was used. After the

metabolite concentrations were log-transformed, linear

modelling statistical tests were applied. In specific, in the

first model (disease status) the HD mutation carriers’ and

control individuals’ groups were coded as the main

covariate and tested in a linear model using gender (cate-

gorical) age and BMI as additional (continuous) covariates.

In the second model (disease severity) a four group cate-

gorical variable vector was used as the main covariate. The

following groups were defined: Group 1—(n = 36) con-

trol, Group 2—(n = 29) pre-symptomatic (TMS score B5),

Group 3—(n = 31) symptomatic (TMS[ 5, TFC score

13–7) and Group 4—(n = 37) advanced symptomatic

individuals (TMS score [5, TFC score of 0–6). For both

models the final P value that was used to judge the validity

of our findings was extracted using the ANOVA function

on the two nested linear models; the reduced linear model

containing only the covariates of gender, age and BMI and

the full model additionally containing the main disease

group categorical covariate. Since many identified metabo-

lites showed a high degree of correlation (see Supplemen-

tary File 2), the Bonferroni method was judged too strict for

multiple testing correction. Therefore, the experiment-wide

significance threshold that was used was 1.34E-03. This

value was calculated using the matrix spectral decomposi-

tion method and the eigenvalues of the metabolites corre-

lation matrix (matSpDlite) (Li and Ji 2005; Cheverud 2001;

Nyholt 2004). Bar plots for all metabolites that passed

quality control were created using the Platform for RIKEN
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Metabolomics (PRIMe) tool for Microsoft excel (Tsugawa

et al. 2015). The PLS-DA analysis across controls, presymp-

tomatics and symptomatic HD carriers was performed using

the corresponding function of the MetaboAnalyst v.3.0

online tool for metabolomics data (Xia et al. 2015).The top,

pair ratio associations for all possible metabolite pair ratios

were calculated through log transformation of the ratios and

the p-gain value was calculated from the individual P values

of the ratio metabolites. In specific, p-gain is defined as the

fold decrease in the P value of association for the pair of

metabolites compared to the lower of the two P values for

the single metabolites (Suhre et al. 2010a).

2.5 Integration of metabolomics

with transcriptomics analysis

Gene expression data from our previously published dataset

(Mastrokolias et al. 2015) were extracted using the scaled

data object from the voom function of the limma package

designed for RNAseq data analysis (Law et al. 2014). The

data for both the genes and the metabolites were regressed for

the effect of age, gender and BMI. The gene expression data

were regressed for cellular hemoglobin percentage (he-

moglobin alpha and beta sequencing count tags) as a proxy of

the cell reticulocyte count (Mastrokolias et al. 2012). For the

extraction of the genes that were related to the metabolites

the metabolic pathway databases from the Kyoto Encyclo-

pedia of Genes and Genomes KEGG (Kanehisa et al. 2012)

(release 63) and BioCyc (version 16) were accessed for

retrieving background knowledge for each metabo-

lite(Dharuri et al. 2013). Two interrogation schemes were

employed: pathway scheme and reaction scheme. In a

pathway scheme, for a given metabolite, all the pathways

that it participated in were determined followed by the

retrieval of all the genes that participated in these pathways.

In a reaction scheme, given a metabolite, all the reactions that

it was part of and the compounds that participated in these

reactions were determined (Dharuri et al. 2013).

For the integrated metabolomics and transcriptomic

pathway analysis, the community driven resource of

curated pathways WikiPathways (Kutmon et al. 2015) was

used to identify common pathways. The WikiPathways

human pathway collection is the largest and most active

collection per species. In terms of coverage of unique

human genes, WikiPathways is comparable to KEGG. To

investigate which metabolite-gene pathways overlapped we

used all 10 significant metabolites (8 phosphatidylcholines

and 2 amino acids) and the top 200 genes from our above

linear modeling, as the input to the WikiPathways Web

Service. Since pathway information for individual phos-

phatidylcholines is lacking, we also included the com-

pounds at the phosphatidylcholine compound class level

and their isomers (1,2-diacyl-sn-glycero-3-phosphocholine,

alkyl,acyl-sn-glycero-3-phosphocholine and 1,2-diacyl-sn-

glycero-3-phosphocholine(1?)) according to the Chemical

Entities of Biological Interest ontology (Hastings et al.

2013).

3 Results

3.1 The metabolomic dataset

Using the Biocrates p150 kit we quantified serum con-

centrations of 163 metabolites in 133 serum samples from

97 HD mutation carriers and 36 controls. After quality

control, 114 of the initial 163 metabolites could be reliably

detected and these were used for further analysis. These

114 metabolites consisted of 14 amino acids, 7 carnitines,

10 lyso-phosphatidylcholines, 69 phospatidylcholines, 5

hydroxysphingomyelins, 8 sphingomyelins and 1 hexose.

Supplementary File 3 contains data distributions of all 163

metabolites, the metabolites that were excluded and their

concentrations relative to the platform limit of detection

(LOD) and lower limit of quantification (LLOD). In order

to analyze the group structure of the metabolomic dataset

across controls, presymptomatic and symptomatic HD

patients, we performed a partial least square discriminant

analysis (PLS-DA). The symptomatics group (group 3 and

4 combined, TMS[5) exhibited a clear shift from the

control (group 1) and the pre-symptomatic (group 2)

samples. The scores plot for the symptomatics, pre-symp-

tomatics and control groups and for the first two principal

components can be seen in Fig. 1a while the relative

contributions and the relationships between the metabolites

can be seen in the loadings plot of Fig. 1b. The observed

concentration levels for all 114 metabolites across all four

groups can be seen in Supplementary File 4. To identify

which metabolites were significantly different in HD, the

concentration changes of the detected metabolites were

tested using a linear regression model between HD muta-

tion carriers versus control individuals and a linear

regression model using four disease severity stage groups

as described in the Sect. 2. We identified 3 metabolites

significantly changed in the HD mutation carriers versus

controls analysis and 8 metabolites significantly changed in

the 4 disease stage group analysis that associated with

disease progression (adj.P.val\ 1.34E-03) (see Table 1).

In the two group analysis the amino acids serine and

threonine were higher in HD mutation carriers while the

phosphatidylcholine acyl-alkyl C 36:0 average level was

lower (see Fig. 2). In the 4 group analysis, 8 metabolites in

total passed the significance threshold. These 8 metabolites

were exclusively acyl alkyl and di-acyl phosphatidyl-

cholines and were lower in HD versus controls and asso-

ciated with increasing disease progression (for the top 5
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metabolites see Fig. 3). In the 4 group analysis serine was

also in the top 10 metabolites but failed to pass the adjusted

P value significance level.

3.2 Association of metabolite pair ratios

with disease status and severity

Previous studies have shown that calculating the ratios of

individual metabolite concentrations can reduce dataset

variation. Furthermore, such metabolite ratio changes have

been connected to altered enzymatic reactions and path-

ways, can be used as an approximation of the associated

enzymatic activity (Petersen et al. 2012; Gieger et al. 2008)

and ratios of specific pairs of metabolites have been sug-

gested as biomarkers (Ceglarek et al. 2002; Perdelli et al.

2002). For this reason, we calculated all the pairwise ratios

of the detected metabolites and tested for the association of

their ratios using the same two linear models. The resulting

associations were ranked according to their p-gain values.

The results for the two group (HD vs. controls) analysis

and the four group analysis can be seen in Supplementary

File 5. We observed that in the two group analysis the

results were dominated by inter-phosphatidylcholine ratios,

as well as ratios of phosphatidylcholines to serine and

threonine. Additionally, one of the top p-gain values was

that of the arginine to carnitine ratio. Most of the ratios of

the sphingolipids and sphingolipids to amino acids were

lower in HD carrier samples. The metabolite pair associ-

ations with controls, pre-symptomatic and the 2 symp-

tomatic groups revealed similar results. The highest p-gain

values were exhibited by inter-phosphatidylcholine ratios

but also phosphatidylcholines and hydroxy-sphingomyelin

C16:1 (SM.OH.C16:1). The 4 group disease progression

analysis was also characterized by the absence of any

amino acids in the top p-gain analysis similar to the indi-

vidual metabolite analysis. These results confirm the the

changes in phosphatidylcholines levels in the disease and

strengthen the potential of the use of (pairs of) phos-

phatidylcholines as markers of disease progression since

variation is reduced.

3.3 Integration of metabolomics

with transcriptomics

To further explore potential molecular connections of the

identified metabolites with HD relevant or novel disease

state/progression mechanisms we combined our targeted

metabolomics dataset with our previously published next-

generation sequencing gene expression data from the same

patient and control cohort (Mastrokolias et al. 2015). For

our initial analysis we focused on the phosphatidylcholine

A B

Fig. 1 Diagram representing principal component analysis per-

formed using Metaboanalyst v 3.0. a Principal component analysis

results represent HD presymptomatic, symptomatic patients and

control group separation based on the top 2 most significantly

contributing components. Colored circles represent 95 % confidence

intervals. Colored dots represent individual samples. b Loading plots

of the first two principal components for the platform metabolites.

Some metabolite names have been omitted next from their corre-

sponding metabolite symbol for figure clarity purposes
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metabolites since these exhibited significant statistical

associations with HD disease progression scores. Using the

previously published methodology of Dharuri et al. (2013)

we extracted the genes from the KEGG (Kanehisa et al.

2010) and BioCyc (Romero et al. 2005) databases that

corresponded to phosphatidylcholine related metabolic

pathways. Consequently, we reanalyzed the previously

published gene expression data from the same cohort, using

the same linear model with the metabolomics dataset. We

extracted the top 200 differentially expressed genes and

compared them with the phosphatidylcholine pathways

related genes from the KEGG and BioCyc databases. We

identified 8 genes that were present in both the differen-

tially expressed gene list and the above two databases lists.

These genes were ALOX5 (arachidonate 5-lipoxygenase),

ALDH1B1 (aldehyde dehydrogenase 1 member 1), KMT2A

(lysine specific methyltransferase 2A), MBOAT1 (mem-

brane bound O-acyltransferase DC1), MTRR (methionine

synthase reductase), PISD (phosphatidylserine decarboxylase),

PLB1 (phospholipase B1) and HADH (hydroxyacyl-CoA

dehydrogenase). The correlation values of each of the 8

genes with the 8 significant metabolites from our 4 group

linear modeling analysis are represented in Fig. 4. We

observed that for the genes MBOAT1, PLB1, ALDH1B1 and

MTRR the correlations with the majority of the 8 metabolites

were high (r[0.6) while for the other 4 genes the corre-

lations were average or poor. The highest associations were

observed between the genes ALDH1B1, MTRR and PLB1

with phosphatidylcholines PC ae C.38:0, PC aa C36:5 and

PC aa C38:6 (see Fig. 5). Additional genes that were present

both in the BioCyc and KEGG databases and our previous

sequencing-based gene expression gene lists and for the

amino acid serine were also NPL (N-acetylneuraminate

pyruvate lyase), PGLYRP1 (peptidoglycan recognition pro-

tein 1) and TKTL1 (transketolase-like 1). Finally, for the

serine and threonine metabolites we could not identify any

unique common genes. It should be noted however that the

above phosphatidylcholine related gene ALDH1B1 was also

Table 1 Table of the top 10

metabolites resulting from

linear modeling analysis of

metabolite concentrations

between HD mutation carriers

and controls and accounting for

disease status (top) or disease

progression group (bottom) and

gender, age and BMI

Metabolite ID HD mutation carriers versus controls analysis P value Concentration change

Ser Serine 3.08E205 Higher in HD

PC ae C36:0 Phosphatidylcholine acyl-alkyl C 36:0 6.61E205 Lower in HD

Thr Threonine 1.02E203 Higher in HD

PC ae C42:0 Phosphatidylcholine acyl-alkyl C 42:0 2.35E-03 Lower in HD

PC ae C44:3 Phosphatidylcholine acyl-alkyl C 44:3 3.72E-03 Lower in HD

PC aa C38:6 Phosphatidylcholine diacyl C 38:6 4.60E-03 Lower in HD

PC ae C38:0 Phosphatidylcholine acyl-alkyl C 38:0 8.95E-03 Lower in HD

Arg Arginine 1.80E-02 Higher in HD

PC aa C36:0 Phosphatidylcholine diacyl C 36:6 1.99E-02 Lower in HD

PC aa C40:6 Phosphatidylcholine diacyl C 40:6 2.33E-02 Lower in HD

Metabolite ID Disease progression (4) group analysis P value Concentration change

PC aa C38:6 Phosphatidylcholine diacyl C 38:6 1.01E204 Lower in HD

PC aa C36:0 Phosphatidylcholine diacyl C 36:0 4.22E204 Lower in HD

PC ae C38:0 Phosphatidylcholine acyl alkyl C 38:0 4.42E204 Lower in HD

PC aa C38:0 Phosphatidylcholine diacyl C 38:0 5.48E204 Lower in HD

PC ae C38:6 Phosphatidylcholine acyl alkyl C38:6 5.63E204 Lower in HD

PC ae C42:0 Phosphatidylcholine acyl alkyl C 42:0 1.06E203 Lower in HDa

PC aa C36:5 Phosphatidylcholine diacyl C 36:5 1.16E203 Lower in HDb

PC ae C36:0 Phosphatidylcholine acyl alkyl C 36:0 1.19E203 Lower in HDa

PC ae C40:1 Phosphatidylcholine acyl alkyl C40:1 1.72E-03 Lower in HD

Ser Serine 1.96E-03 Higher in HD

P values represent significance probability values [Pr([F)] from the two-way ANOVA calculation on two

(nested) linear models accounting for disease status or disease stage respectively (measurement variables)

and gender, age and BMI (nominal variables). Metabolites that pass the adjusted P value threshold are

highlighted in bold. Concentration changes were obtained from the fitted data of the metabolites using the

full linear statistical model (see above) and disease state and stage respectively as the main covariate
a Upper quartile range higher in earlier HD symptomatics (group 3) versus HD presymptomatics (group2)
b Higher in earlier symptomatics
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present in our threonine KEGG reaction list and similarly

PISD and PLB1 were also present in our serine KEGG

reaction list.

To expand on the above findings, we performed a sec-

ond analysis using the WikiPathways Web Service and all

10 significant metabolites (8 phosphatidylcholines and 2

amino acids) from both of the above metabolomics linear

models, in order to investigate further connections between

potential metabolomics and transcriptomic pathways. The

metabolite-gene pathways with the highest overlap of

genes and metabolites we identified were glycerophos-

pholipid biosynthesis (containing genes PLB1, PISD and

Serine and 1,2-diacyl-sn-glycero-3-phosphocholine (1?))

and phase II conjugation (containing gene MTRR and ser-

ine and threonine), supporting the results from our first

pathway analysis. All the overlapping pathways reported

Fig. 2 Boxplots of concentration levels of metabolites that were

significantly different between control individuals and HD mutations

carriers. Numbers represent the group sizes and asterisks represent

significance values from linear modelling analysis. Colored dots

represent individual sample concentrations. Asterisks represent

significance probability values [Pr([F)] from the ANOVA calculation

of the single (full—see methods) linear model accounting for disease

status, gender, age and BMI. *P value\0.05, ***P value\0.001
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for the Wikipathways analysis can be seen in Supplemen-

tary File 6.

4 Conclusions

The current study targeted approach of the Biocrates

technology has been successfully applied in many cohort

studies (Draisma et al. 2015; Vouk et al. 2016; Illig et al.

2010). Comparison of this type of data with data obtained

from non-targeted platforms has shown strong positive

correlations for metabolites named for the same com-

pounds. Furthermore such a comparison has shown that the

results obtained are complementary and informative for

future studies of comprehensive metabolomic analyses

with different platforms (Suhre et al. 2010b; Yet et al.

2016).Using a well-defined, UHDRS-based linear model,

we discovered a total of 10 metabolites whose concen-

trations showed significant associations with Hunting-

ton’s disease state and severity stages. Eight of the 10

metabolites were phosphatidylcholines while the other two

were the amino acids serine and threonine. These results

are in agreement with the results of Tsang et al. that have

reported a decrease of phosphatidylcholine levels in frontal

cortex lipid extracts of a 3-NP treated HD rat model (Tsang

et al. 2009). Phosphatidylcholine is a major membrane

phospholipid and has been shown to have a role in neuronal

differentiation and cell fate determination (Marcucci et al.

2010). In the past, oral administration of lecithin and other

choline containing dietary sources have been suggested as

a replacement therapy for HD and as a potential substrate

source for brain acetylcholine synthesis (Rosenberg and

Davis 1982). The current study shows an increase of serine

and threonine in HD patients as shown from the HD versus

controls linear modeling. Serine has an important role in

the metabolism of purines and pyrimidines since it is the

precursor of several other amino acids. It is also a precursor

to numerous other metabolites, including sphingolipids and

folate, which is the principal donor of one-carbon frag-

ments in biosynthesis. As such, one explanation for the

increased serine levels could be that in Huntington’s dis-

ease these amino acids are intended for the production of

phospholipids whose levels are decreasing with disease

severity. Moreover, the D-serine amino acid isomer can act

as a neuromodulator since it can activate NMDA receptors.

NMDA receptors have been implicated in a range of pro-

cesses including memory, learning and development and

their excessive stimulation can be involved in a number of

neurodegenerative conditions including HD (Hardingham

and Bading 2010).

The second of the two amino acids whose levels were

altered in HD, threonine, is an essential amino acid and

together with serine constitute the only two proteinogenic

amino acids. Threonine can be converted to pyruvate while

in an intermediate step it can undergo thiolysis to produce

acetyl-coA. In a less common pathway threonine can also

be converted to a-ketobutyrate via serine dehydratase. It

has been previously suggested that pyruvate can have a

neuroprotective effect in neurological diseases by, among

others, enhancing brain to blood glutamate efflux, scav-

enging H2O2 and having an anti-inflammatory action

(Zilberter et al. 2015). Furthermore it has been shown that

pyruvate administration can have a neuroprotective effect

in a quinolinic acid rat model of HD (Ryu et al. 2003).

Additionally, the inability of the excess threonine to

undergo thiolysis and produce acetyl-CoA could result in

reduced energy production (Krebs cycle) as well as an

bFig. 3 Boxplots of concentration levels of significant metabolites

between 4 groups—controls, presymptomatic, symptomatic and

advanced symptomatic HD mutation carriers. Numbers represent the

group sizes and asterisks represent significance values from linear

modelling analysis. Colored dots represent individual sample con-

centrations. Black dots represent outliers. Asterisks represent signif-

icance probability values [Pr([F)] from the ANOVA calculation of

the single (full—see methods) linear model accounting for disease

stage group, gender, age and BMI. (.) P value\0.1, *P value\0.05,

**P value\0.01
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Fig. 4 Heatmap of correlation values between gene expression levels

and phosphatidylcholines metabolite concentrations. The selected

genes shown here are genes identified using our previous gene

expression data and that participate in phosphatidylcholine KEGG

and BioCyc pathways and reactions. Phosphatidylcholines shown

here are the statistically significant phosphatidylcholine metabolites

identified from the 4 group linear modelling analysis. Color key

represents absolute correlation values
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insufficient synthesis of acetylcholine. The increased levels

of threonine in the mutation carriers could therefore rep-

resent a compensatory mechanism in an attempt to produce

more substrates for the generation of the above neuropro-

tective molecules such as pyruvate and/or the inability of

the threonine metabolizing enzymes to properly process the

present levels of this amino acid.

Using the pairwise combination of all the individual

metabolites we discovered a series of metabolites ratios

(mainly phosphatidylcholines) that changed gradually with

disease severity. These consisted of changes in inter acyl-

alkyl-phosphatidylcholines ratios but also changes in the

sphingomyelins to phosphatidylcholines ratios. Sphin-

gomyelins are a group of sphingolipids found in

Fig. 5 Plots of selected phosphatidylcholine metabolites versus their

corresponding gene that participates in a phosphatidylcholine path-

way or reaction. The 3 plots represent the most highly correlated

metabolite to gene pairs from the integration of metabolites to gene

expression data analysis. Different colored dots represent individual

samples from each disease state group and brown lines represent loess

fit lines
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mammalian cell membranes and especially membranes that

surround nerve cell axons (Slotte 2013). A decreased ratio

of sphingomyelins to lipids across disease stages could

indicate an increased vulnerability and damage of nerve

cell axons. Even though the role of sphingolipids and

gangliosides in brain damage has been investigated since

the 1970s (Wherrett and Brown 1969; Higatsberger et al.

1981; Heipertz et al. 1977) it is not until recently that

strong evidence has been presented in support of the role of

gangliosides and their biosynthetic genes in autophagic and

apoptotic signaling (Takamura et al. 2008; Desplats et al.

2007). Additionally, the ratio of arginine to carnitine

metabolites was among the top results for the two group

(HD vs. controls) metabolite pair analysis with modest

p-gain values. Arginine is a non-essential amino acid that is

also a precursor of nitric oxide (NO) a molecule involved

in neurotransmission and inflammation, both of which

processes are thought to be deregulated in HD (Andre et al.

2016). It has been previously postulated that increased

dietary L-arginine could accelerate motor symptom and

weight loss events in HD models, through changes in

cerebral blood flow and the regulation of NO and nitric

oxide synthase (Deckel et al. 2000; Deckel 2001). Fur-

thermore it has been also shown that arginine uptake by

HD patients separated them in two distinct metabolic

profile groups indicative of a complex and idiomorphic

function of this molecule across different individuals

(Salvatore et al. 2011). Since the levels of arginine were

already found higher in HD in the individual metabolite

analysis, the increased arginine to carnitine ratio in HD

patients could indicate an arginine-concomitant decrease in

the levels, of the antioxidant and lipid regulator molecule,

of carnitine. This is further supported by the study of

Cuturic et al., who showed that catabolism and chronic

anticonvulsant administration in HD institutionalized

patients predisposed to low serum carnitine and that sup-

plementation with levocarnitine improved motor and cog-

nitive measures in these patients (Cuturic et al. 2013).

Finally apart from their potential roles in deregulated HD

molecular pathways these ratios could also serve as

potential biomarkers of disease severity/progression since

by calculating individual metabolite ratios the dataset

variation is reduced and the biomarker robustness is

increased.

Moreover, we integrated a previously published gene

expression data with the current metabolomics dataset from

the same cohort. In specific by generating bioinformatics

workflow-based metabolite specific gene sets we identified

a group of 8 genes that were decreased in phosphatidy-

choline metabolic pathways and also found deregulated in

our HD patients. Three of these transcriptomics deregu-

lated genes (MTRR, PLB1 and ALDH1B1) exhibited

especially high correlation with specific diacyl and acyl-

alkyl phosphatidylcholines that were downregulated in HD

in the metabolomics dataset. More specifically, MTRR is

involved in the proper function of methionine synthase and

folate metabolism (Wolthers et al. 2007; Leclerc et al.

1998). Mutations in the MTRR gene are thought to be

responsible for multiple disorders and especially those

affected through the deregulation of the folate cycle and

homocysteine metabolism (Mitchell et al. 2014; Man-

daviya et al. 2014). In the past, increased levels of plasma

total homocysteine have been found in HD patients and it

has been hypothesized that these increased homocysteine

levels are a contributing factor to neurodegeneration in

these patients (Andrich et al. 2004). The second of the three

genes whose expression was highly correlated with

metabolite levels, PLB1 is a membrane-associated phos-

pholipase with phospholipase A2 activity that exhibits

preferential hydrolysis at the sn-2 position of diacyl-

phospholipids. A recent study by Fonteh et al. and in

Alzheimer’s disease patients cerebrospinal fluid has shown

that a significant increase in this phospholipase A2 activity

accompanies the glycerophospholipid decrease observed in

late onset AD patients (Fonteh et al. 2013). This is in

agreement with our data since the levels of PLB1 exhibited

an inverse correlation with all 8 of the metabolites that

were statistically significantly associated with HD pro-

gression. Thus in a similar fashion with the findings of

Fonteh et al. the increased PLB1 phospholipase A2

expression levels in our HD blood samples could be

indicative of perturbation of membrane structures with a

concomitant disruption of cellular transport and clearances

processes as well as a resulting inflammation overactiva-

tion (Stephenson et al. 1996; Sun et al. 2004). Finally, this

integrated ‘‘-omics’’ analysis showed that potential path-

ways affected from the deregulation of the above genes and

changed metabolite concentrations were glycerophospho-

lipid biosynthesis, vitamin B12 and folate metabolism. It

has been previously shown that low choline and folate

levels are interrelated and that the de novo synthesis of

phosphatidycholine is insufficicent to maintain choline

levels when the levels of the previous two compounds are

also low (Jacob et al. 1999). Low folate has been associated

with cardiovascular disease, a pathology that also affects

HD patients and according to some surveys is the leading

cause of death in patients (Abildtrup and Shattock 2013;

Mihm et al. 2007). The administration of choline has been

shown to reduce total plasma homocysteine levels (Olthof

et al. 2005), an indicative cardiovascular disease risk fac-

tor, while folate and vitamin B12 supplementation has been

considered as an additional supplementation therapy for

many neuropsychiatric disorders (Stanger et al. 2009; Kifle

et al. 2009).

Novel findings from our study include the serum

upregulation of serine and threonine levels as well as the
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inverse association of the levels of a group of 8

phospatidylcholine metabolites with disease progression.

The lower level of these metabolites support the evidence

found regarding altered lipid metabolism in neurodegen-

erative disorders as well as the use of phosphatidylcholine

as a potential therapeutic avenue (Growdon 1987; Adib-

hatla and Hatcher 2008; Adibhatla et al. 2006). The

increased amino acid level findings are in partial agreement

with an older study that also identified increased serine

levels but instead in the Broadmann’s area 10 of HD

patients (Bonilla et al. 1988). On the other hand, these

results are in contrast with the findings of a study by

Gruber et al. that reported decreased levels of serine and 4

more amino acids in HD mutation carriers, in plasma

samples (Gruber et al. 2013). Previous studies by Mochel

et al. have identified valine, leucine and isoleucine

metabolite levels to be decreased in plasma samples of HD

patients versus presymptomatic and control individuals

(Mochel et al. 2007, 2011). We could not validate this

finding in our serum samples using the Biocrates platform.

A possible explanation for this could be the different

platforms and protocols that were used to measure the

metabolites. Additionally, the differences could be attrib-

uted to the different group sizes and the different UHDRS

score thresholds that were used to differentiate between

presymptomatic, early and mild HD patient groups.

Another potential limitation or reason in regard to the

disagreement of some our results with previous studies

could be that our study was performed using serum sam-

ples while the previous studies were performed using

plasma In specific, using the Biocrates platform employed

in the current study it has been shown that serum exhibits

higher sensitivity than plasma due to the fact that

metabolite concentrations are generally higher in serum

samples (Yu et al. 2011; Kronenberg et al. 1998). An

additional limitation of the study could be the potential

effect of drug treatment on the metabolomics profile of the

individuals used for the current study, which was not taken

into account since this information was not available for all

study participants (especially controls). Considering the

great disease phenotypic variation and the different pro-

gression rates that characterize Huntington’s disease

mutation carriers our results will require further validation

and refinement in even larger groups before they are used

in a clinical trial setting. Such additional validation

experiments can reduce the intergroup metabolite concen-

tration overlap and clearly define the concentration

thresholds that can be used to distinguish between disease

progression/stages. Finally, further research would have to

be performed to determine if the current metabolic changes

are specific for Huntington’s disease or might also partly

track changes in other similar neuromuscular disorders and

could therefore have additional potential diagnostic

applicability.

The present study is according to our knowledge the first

study that uses a targeted metabolomics approach in

peripheral blood serum samples and in such a large cohort

of HD patient peripheral blood samples, with so many pre-

symptomatic patients. Obtaining a disease specific meta-

bolomic profile of HD could greatly improve our under-

standing of the disease pathology. Additionally, these

profiles can potentially be used for patient screening as

well as drug safety and effectiveness assessment. This

could allow for earlier diagnosis something which is very

important for HD where disease progression rates and

clinical evaluation scores can be highly variable. Serum

samples can also be collected noninvasively allowing for

longitudinal studies as well as their use both in the pre-

clinical and clinical settings. Our findings combined with

the reproducibility and standardization of platforms such as

the one used in this study demonstrates the potential of

metabolomics to identify disease changes as well as

prospective disease progression biomarkers.
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