32 research outputs found

    Evidence for early life in Earth’s oldest hydrothermal vent precipitates

    Get PDF
    Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite–haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago

    A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes

    Get PDF
    BACKGROUND: TGM1(transglutaminase 1) is an enzyme that crosslinks the cornified envelope of mature keratinocytes. Appropriate expression of the TGM1 gene is crucial for proper keratinocyte function as inactivating mutations lead to the debilitating skin disease, lamellar ichthyosis. TGM1 is also expressed in squamous metaplasia, a consequence in some epithelia of vitamin A deficiency or toxic insult that can lead to neoplasia. An understanding of the regulation of this gene in normal and abnormal differentiation states may contribute to better disease diagnosis and treatment. METHODS: In vivo requirements for expression of the TGM1 gene were studied by fusing various lengths of promoter DNA to a reporter and injecting the DNA into mouse embryos to generate transgenic animals. Expression of the reporter was ascertained by Western blotting and immunohistochemistry. Further delineation of a transcriptionally important distal region was determined by transfections of progressively shortened or mutated promoter DNA into cultured keratinocytes. RESULTS: In vivo analysis of a reporter transgene driven by the TGM1 promoter revealed that 1.6 kilobases, but not 1.1 kilobases, of DNA was sufficient to confer tissue-specific and cell layer-specific expression. This same region was responsible for reporter expression in tissues undergoing squamous metaplasia as a response to vitamin A deprivation. Mutation of a distal promoter AP1 site or proximal promoter CRE site, both identified as important transcriptional elements in transfection assays, did not prevent appropriate expression. Further searching for transcriptional elements using electrophoretic mobility shift (EMSA) and transfection assays in cultured keratinocytes identified two Sp1 elements in a transcriptionally active region between -1.6 and -1.4 kilobases. While mutation of either Sp1 site or the AP1 site singly had only a small effect, mutation of all three sites eliminated nearly all the transcriptional activity. CONCLUSIONS: A distal region of the TGM1 gene promoter, containing AP1 and Sp1 binding sites, is evolutionarily conserved and responsible for high level expression in transgenic mice and in transfected keratinocyte cultures

    H-Ras Expression in Immortalized Keratinocytes Produces an Invasive Epithelium in Cultured Skin Equivalents

    Get PDF
    Ras proteins affect both proliferation and expression of collagen-degrading enzymes, two important processes in cancer progression. Normal skin architecture is dependent both on the coordinated proliferation and stratification of keratinocytes, as well as the maintenance of a collagen-rich basement membrane. In the present studies we sought to determine whether expression of H-ras in skin keratinocytes would affect these parameters during the establishment and maintenance of an in vitro skin equivalent.Previously described cdk4 and hTERT immortalized foreskin keratinocytes were engineered to express ectopically introduced H-ras. Skin equivalents, composed of normal fibroblast-contracted collagen gels overlaid with keratinocytes (immortal or immortal expressing H-ras), were prepared and incubated for 3 weeks. Harvested tissues were processed and sectioned for histology and antibody staining. Antigens specific to differentiation (involucrin, keratin-14, p63), basement-membrane formation (collagen IV, laminin-5), and epithelial to mesenchymal transition (EMT; e-cadherin, vimentin) were studied. Results showed that H-ras keratinocytes produced an invasive, disorganized epithelium most apparent in the lower strata while immortalized keratinocytes fully stratified without invasive properties. The superficial strata retained morphologically normal characteristics. Vimentin and p63 co-localization increased with H-ras overexpression, similar to basal wound-healing keratinocytes. In contrast, the cdk4 and hTERT immortalized keratinocytes differentiated similarly to normal unimmortalized keratinocytes.The use of isogenic derivatives of stable immortalized keratinocytes with specified genetic alterations may be helpful in developing more robust in vitro models of cancer progression

    Primate involucrins: antigenic relatedness and detection of multiple forms.

    No full text
    Hominoid apes (gorilla, chimpanzee, orangutan, gibbon), Old World monkeys (rhesus, cynomolgus), New World monkeys (owl, cebus), and a prosimian (lemur) express involucrin-like proteins in cultured keratinocytes. Primate involucrins can be precipitated with trichloroacetic acid, resolubilized at pH 8, and subsequently retain aqueous solubility in 67% ethanol. Polyacrylamide gel electrophoresis of keratinocyte extracts after this rapid partial purification has revealed in each species tested one (chimpanzee, orangutan, gibbon) or two (gorilla, rhesus, owl, cebus) antigenically crossreactive proteins that migrate in the vicinity of human involucrin. In the species examined further (gorilla, chimpanzee, rhesus), poly(A)+ mRNA isolated from the cultures directed the cell-free translation of polypeptides with mobilities similar to those extracted from the cells. From five cynomolgus monkeys, three different electrophoretic profiles were obtained, suggesting the existence of different alleles. Quantitative comparisons by a sensitive enzyme-linked immunosorbent assay indicated that certain primate involucrins have a higher density of antigenic determinants than the human protein, whereas others lack some determinant(s). In contrast to those from other species, all of which showed substantial crossreactivity, the lemur protein was minimally immunoreactive by immunoblotting and not clearly detected by solid-phase assay. The electrophoretic and antigenic differences displayed throughout the primate order suggest that this protein has been subject to relatively rapid evolution
    corecore